The period, speed and acceleration of a satellite are only dependent upon the radius of orbit and the mass of the central body that the satellite is orbiting. I hope this helps. Sorry if i am wrong.
Answer:
6400 m
Explanation:
You need to use the bulk modulus, K:
K = ρ dP/dρ
where ρ is density and P is pressure
Since ρ is changing by very little, we can say:
K ≈ ρ ΔP/Δρ
Therefore, solving for ΔP:
ΔP = K Δρ / ρ
We can calculate K from Young's modulus (E) and Poisson's ratio (ν):
K = E / (3 (1 - 2ν))
Substituting:
ΔP = E / (3 (1 - 2ν)) (Δρ / ρ)
Before compression:
ρ = m / V
After compression:
ρ+Δρ = m / (V - 0.001 V)
ρ+Δρ = m / (0.999 V)
ρ+Δρ = ρ / 0.999
1 + (Δρ/ρ) = 1 / 0.999
Δρ/ρ = (1 / 0.999) - 1
Δρ/ρ = 0.001 / 0.999
Given:
E = 69 GPa = 69×10⁹ Pa
ν = 0.32
ΔP = 69×10⁹ Pa / (3 (1 - 2×0.32)) (0.001/0.999)
ΔP = 64.0×10⁶ Pa
If we assume seawater density is constant at 1027 kg/m³, then:
ρgh = P
(1027 kg/m³) (9.81 m/s²) h = 64.0×10⁶ Pa
h = 6350 m
Rounded to two sig-figs, the ocean depth at which the sphere's volume is reduced by 0.10% is approximately 6400 m.
I think that it’s false I might be wrong but I want the points
Answer:
No, it is not proper to use an infinitely long cylinder model when finding the temperatures near the bottom or top surfaces of a cylinder.
Explanation:
A cylinder is said to be infinitely long when is of a sufficient length. Also, when the diameter of the cylinder is relatively small compared to the length, it is called infinitely long cylinder.
Cylindrical rods can also be treated as infinitely long when dealing with heat transfers at locations far from the top or bottom surfaces. However, it not proper to treat the cylinder as being infinitely long when:
* When the diameter and length are comparable (i.e have the same measurement)
When finding the temperatures near the bottom or top of a cylinder, it is NOT PROPER TO USE AN INFINITELY LONG CYLINDER because heat transfer at those locations can be two-dimensional.
Therefore, the answer to the question is NO, since it is not proper to use an infinitely long cylinder when finding temperatures near the bottom or top of a cylinder.
I believe the answer is x