20 g O2 x 1 mol O2/32 g O = 0.625 mol O2
Answer:
A: element B
B: element A
C: element B
D: element A
Explanation:
decrease in size leads increase in electronegativity because the smaller the size, the closer the shell is to the nucleus. Also, atomic radius decreases to the right and up on the periodic table. Atomic radius increases to the left and down a period. I hope this helps!
You can have as many controls as necessary, But they must remain equal at all times in order to get the most accurate results
Missing in your question:
Picture (1)
when its an open- tube manometer and the h = 52 cm.
when the pressure of the atmosphere is equal the pressure of the gas plus the pressure from the mercury column 52 Cm so, we can get the pressure of the gas from this formula:
P(atm) = P(gas) + height (Hg)
∴P(gas) = P(atm) - height (Hg)
= 0.975 - (520/760)
= 0.29 atm
Note: I have divided 520 mm Hg by 760 to convert it to atm
Picture (2)
The pressure of the gas is the pressure experts by the column of mercury and when we have the Height (Hg)= 67mm
So the pressure of the gas =P(atm) + Height (Hg)
= 0.975 + (67/ 760) = 1.06 atm
Picture (3)
As the tube is closed SO here the pressure of the gas is equal the height of the mercury column, and when we have the height (Hg) = 103 mm. so, we can get the P(gas) from this formula:
P(gas) = Height(Hg)
= (103/760) = 0.136 atm
The density of it would be 57. Do the math and apply the formula to it and you would get this answer.