1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babunello [35]
2 years ago
6

16. Cassandra notices that when she breathes on a cool window, the water vapor in her breath forms

Physics
1 answer:
choli [55]2 years ago
7 0

Answer: A

Explanation:I studied .

You might be interested in
Two spheres A and B of negligible dimensions and masses 1 kg and √3 kg respectively, are supported on the smooth circular surfac
alexdok [17]

Answer:

α = π/3

β = π/6

Explanation:

Use arc length equation to find the sum of the angles.

s = rθ

π/20 m = (0.1 m) (α + β)

π/2 = α + β

Draw a free body diagram for each sphere.  Both spheres have three forces acting on them:

Weight force mg pulling down,

Normal force N pushing perpendicular to the surface,

and tension force T pulling tangential to the surface.

Sum of forces on A in the tangential direction:

∑F = ma

T − m₁g sin α = 0

T = m₁g sin α

Sum of forces on B in the tangential direction:

∑F = ma

T − m₂g sin β = 0

T = m₂g sin β

Substituting:

m₁g sin α = m₂g sin β

m₁ sin α = m₂ sin β

(1 kg) sin α = (√3 kg) sin (π/2 − α)

1 sin α = √3 cos α

tan α = √3

α = π/3

β = π/6

4 0
3 years ago
The placebo effect best illustrates the impact of______on relief from pain.
Sliva [168]

Answer:

B

Explanation:

Your expectations are what makes the pill work, or placebo effect work. showing impact of positive expectation.

4 0
3 years ago
Read 2 more answers
A rock is thrown upward from level ground in such a way that the maximumheight of its flight is equal to its horizontal rangeR.
Snowcat [4.5K]
A) The vertical component of velocity v is taking the rock to a height

Vertical component = vsin\theta
The time taken to reach maximum height = \frac{vsin\theta}{g}
So total time of rocks flight = \frac{2vsin\theta}{g}
Range of rock is due to the horizontal component of velocity = vcos\theta
Range = \frac{2*v*sin\theta*v*cos\theta}{g} = \frac{2*v^2*sin\theta*cos\theta}{g}
Maximum height = \frac{g*t^2}{2} = \frac{v^2*sin^2\theta}{2*g}
Since range = maximum height
We have \frac{2*v^2sin\theta*cos\theta}{g} = \frac{v^2*sin^2\theta}{2*g}
tan\theta = 4
\theta = 75.96^0
So when angle of projection is \theta = 75.96^0 range is equal to maximum height reached.
b) We have range = \frac{2*v^2*sin\theta*cos\theta}{g} =\frac{2*v^2*sin2\theta}{g}
Maximum of range is reached when \theta = 45^0
Maximum range = \frac{2*v^2}{g}
c) For range to be equal to maximum height only condition is tan\theta = 4, it does not depend upon acceleration due to gravity and velocity. That angle is a constant.
5 0
3 years ago
Three children are riding on the edge of a merry-go-round that is a solid disk with a mass of 102 kg and a radius of 1.53 m. The
Mnenie [13.5K]

Three children of masses and their position on the merry go round

M1 = 22kg

M2 = 28kg

M3 = 33kg

They are all initially riding at the edge of the merry go round

Then, R1 = R2 = R3 = R = 1.7m

Mass of Merry go round is

M =105kg

Radius of Merry go round.

R = 1.7m

Angular velocity of Merry go round

ωi = 22 rpm

If M2 = 28 is moves to center of the merry go round then R2 = 0, what is the new angular velocity ωf

Using conservation of angular momentum

Initial angular momentum when all the children are at the edge of the merry go round is equal to the final angular momentum when the second child moves to the center of the merry go round  Then,

L(initial) = L(final)

Ii•ωi = If•ωf

So we need to find the initial and final moment of inertia

NOTE: merry go round is treated as a solid disk then I= ½MR²

I(initial)=½MR²+M1•R²+M2•R²+M3•R²

I(initial) = ½MR² + R²(M1 + M2 + M3)

I(initial) = ½ × 105 × 1.7² + 1.7²(22 + 28 + 33)

I(initial) = 151.725 + 1.7²(83)

I(initial) = 391.595 kgm²

Final moment of inertial when R2 =0

I(final)=½MR²+M1•R²+M2•R2²+M3•R²

Since R2 = 0

I(final) = ½MR²+ M1•R² + M3•R²

I(final) = ½MR² + (M1 + M3)• R²

I(final)=½ × 105 × 1.7² + ( 22 +33)•1.7²

I(final) = 151.725 + 158.95

I(final) = 310.675 kgm²

Now, applying the conservation of angular momentum

L(initial) = L(final)

Ii•ωi = If•ωf

391.595 × 22 = 310.675 × ωf

Then,

ωf = 391.595 × 22 / 310.675

ωf = 27.73 rpm

Answer: So, the final angular momentum is 27.73 revolution per minute

7 0
3 years ago
HELP ME OUT PLEASE!!!!!
Nataliya [291]

Answer:

B and D is the answer

Explanation:

I took the assignment <3

3 0
2 years ago
Read 2 more answers
Other questions:
  • Which is heavier—warm air or cold air?
    15·1 answer
  • How is energy transfer related to the ozone layer and its temperature?
    7·1 answer
  • What are the principles of a micrometer screw guage
    10·1 answer
  • A car traveling with constant speed travels 150 km in 7200 s. What is the speed of the car?
    9·1 answer
  • Calculate the displacement traveled (in m) from start to finish.
    12·2 answers
  • What movement allows us to move our side to side?
    7·1 answer
  • 1.) What is the equation for Average Speed?
    10·2 answers
  • A 5.2 kg cat and a 2.5 kg bowl of tuna fish are at opposite ends of the 4.0-m-long seesaw. How far to the left of the pivot must
    11·1 answer
  • An object accelerates 2 m/s2 when an unknown force of 20 N is applied to it. What was the mass of the object?
    5·1 answer
  • If he leaves the ramp with a speed of 30.5 m/s and has a speed of 28.7 m/s at the top of his trajectory, determine his maximum h
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!