Answer:
Explanation:
1 = The given chemical reaction does not follow the law of conservation of mass because,
2 = Four hydrogen atoms are present in reactant side and two hydrogen atoms are present in product side.
3 = 1 ) The given chemical reaction does not follow the law of conservation of mass because,
CH₄ + O₂ → CO₂ + H₂O
16 g + 32 g 44 g + 18 g
48 g 62 g
Law of conservation of mass:
This law stated that mass can not be created or destroyed in chemical reaction. It just changed from one to another form.
For example:
C₂H₄ + 3O₂ → 2CO₂ + 2H₂O
28 g + 96 g = 88 g + 36 g
124 g = 124 g
3.9 g + 12.7 g = 16.6 g
The sum of the masses of potassium and iodine equals the mass of the product, potassium iodide. The results are consistent with he law of conservation of mass.
Hope this heeeelllllllpppppppp
Answer:
<h2>The answer is 4.0 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
From the question
mass = 40 g
volume = 10 mL
The density of the object is
We have the final answer as
<h3>4.0 g/mL</h3>
Hope this helps you
The charge for this compound is positive. For Fe, it's charge is positive 3, and for OH, it's charge is negative 1. You would then criss cross the charges of each and come out with Fe(OH)3. I hope this helped!! :)
Answer:
Check the image above
explanation:
When naming organic compounds based on IUPAC; we take note of functional group, position of functional group.
In 2,3,4-trimethyl-3-heptanol, the functional group is hydroxyl group ( OH ). It is on position 3 (2,3,4-trimethyl<u>-</u><u>3</u><u>-</u>heptanol. Then we put it on the third carbon. Another functional group is methyl group, with three positions, 2, 3, and 4.
In 4-ethyl-4-octanol, the functional group is hydroxyl group ( OH ) which is in position 4 on the fourth carbon. Another functional group is ethyl group in position 4 on the fourth carbon. In this case, the functional groups that have same position, are put on that same carbon.