I think it would be C.100.5cm or D.100.5ml hope that helps
Answer:
Part A: 47.8 mi/h
Part B: 0.072 M/s
Part C: 0.144 M/s
Explanation:
Part A
The average speed or velocity (V) is the variation of the space divided by the variation of the time:
V = (241 - 2)/(8 -3)
V = 47.8 mi/h
Part B
As Part A, the average rate (r) of formation of I2 is the variation of the concentration divided by the variation of time:
r = (1.83 - 1.11)/(15 - 5)
r = 0.072 M/s
Part C
The rates of the substances are proportional of their number of moles (n) which are their coefficient, so:
rI2/nI2 = rHCl/nHCl
0.072/1 = rHCl/2
rHCl = 2*0.072
rHCl = 0.144 M/s
Answer:
There are typically three ways that it is accomplished: use of erythropoietin (EPO) or synthetic oxygen carriers and blood transfusions. While transfusions of large volumes of blood or use of EPO can be detected, microdosing EPO or transfusing smaller volumes of packed red blood cells is much harder to detect.
In light reactions there is successful photosynthesis due to the fact one of the primary reactants for photosynthesis in the first place. At the end of the light reaction, there will be the normal photosynthesis products formed which are glucose and oxygen. For the dark reaction no products will be formed
Answer:
The answer to your question is "It will be a high melting point"
Explanation:
Process
1.- Identify the kind of compounds that is Potassium chloride.
Ionic compounds are composed of a metal and a nonmetal.
Covalent compounds are composed of 2 nonmetals.
Potassium chloride is composed of a metal and a nonmetal so, it is an ionic compound.
2.- Conclude, Potassium chloride has a high melting point because is an ionic compound".