Answer:
Y = 0.0254 m = 25.4 mm
Explanation:
The formula for the fringe spacing in Young's Double-slit experiment is given by the following formula:
where,
Y = fringe spacing = 0.0176 m
λ = wavelength = 425 nm = 4.25 x 10⁻⁷ m
L = Distance between screen and slits
d = slit separation
Therefore,
Now, for:
λ = 614 nm = 6.14 x 10⁻⁷ m
<u>Y = 0.0254 m = 25.4 mm</u>
Answer:
a) It is moving at when reaches the ground.
b) It is moving at when reaches the ground.
Explanation:
Work energy theorem states that the total work on a body is equal its change in kinetic energy, this is:
(1)
with W the total work, Ki the initial kinetic energy and Kf the final kinetic energy. Kinetic energy is defined as:
(2)
with m the mass and v the velocity.
Using (2) on (1):
(3)
In both cases the total work while the objects are in the air is the work gravity field does on them. Work is force times the displacement, so in our case is weight (w=mg) of the object times displacement (d):
(4)
Using (4) on (3):
(5)
That's the equation we're going to use on a) and b).
a) Because the branch started form rest initial velocity (vi) is equal zero, using this and solving (5) for final velocity:
b) In this case the final velocity of the boulder is instantly zero when it reaches its maximum height, another important thing to note is that in this case work is negative because weight is opposing boulder movement, so we should use -mgd:
Solving for initial velocity (when the boulder left the volcano):
Answer:
I'm just going to tell you the information you need but not the answer so you can learn from the problem.
Explanation:
So he was at 248 km mark and traveled 99 km to get to the 149km mark. Then he turns around to go back 18 km to the 167 km mark. That is all the information you need to complete the question I recommend drawing it out in your notes.
The term pressure refers to the force per area created by the weight
of anything whose weight is distributed over an area, such as the
Earth's atmosphere, a lake, a gas inside a sealed jar, or a pointy
high heel.
Because the nucleus is made up of positively charged protons and neutrally charged neutrons, and no negatively charged particles, the charge of the nucleus will always be equal to the sum of the charges of its protons. A simpler way to say it is because each proton has a +1 charge, the charge of the nucleus will be the same as the number of protons in it.