Answer:
r = 0.5 m
Explanation:
First we find the angular speed of the ball by using its period:
ω = θ/t
For the time period:
ω = angular speed = ?
θ = angular displacement = 2π rad
t = time period = 0.5 s
Therefore,
ω = 2π rad/0.5 s
ω = 12.56 rad/s
Now, for the radius:
v = rω
r = v/ω
where,
v = linear speed = 6.29 m/s
r = radius = ?
r = (6.29 m/s)/(12.56 rad/s)
<u>r = 0.5 m</u>
What are the choices ?
Without some directed choices, I'm, free to make up any
reasonable statement that could be said about Kevin in this
situation. A few of them might be . . .
-- Kevin will have no trouble getting back in time for dinner.
-- Kevin will have no time to enjoy the scenery along the way.
-- Some simple Physics shows us that Kevin is out of his mind.
He can't really do that.
-- Speed = (distance covered) / (time to cover the distance) .
If time to cover the distance is zero, then speed is huge (infinite).
-- Kinetic energy = (1/2) (mass) (speed)² .
If speed is huge (infinite), then kinetic energy is huge squared (even more).
There is not enough energy in the galaxy to push Kevin to that kind of speed.
-- Mass = (Kevin's rest-mass) / √(1 - v²/c²)
-- As soon as Kevin reaches light-speed, his mass becomes infinite.
-- It takes an infinite amount of energy to push him any faster.
-- If he succeeds somehow, his mass becomes imaginary.
-- At that point, he might as well turn around and go home ...
if he ever reached Planet-Y, nobody could see him anyway.
Answer:
Pressure on both feet will be
Explanation:
Weight of the person F = 500 N
Area of foot print 
Area of both the foot 
We have to find pressure on both the feet
Pressure is equal to ratio of force and area
So pressure 

So the pressure on both feet will be
when person stands on both feet.
Force , F = ma
F = m(v - u)/t
Where m = mass in kg, v= final velocity in m/s, u = initial velocity in m/s
t = time, Force is in Newton.
m= 1.2*10³ kg, u = 10 m/s, v = 20 m/s, t = 5s
F = 1.2*10³(20 - 10)/5
F = 2.4*10³ N = 2400 N
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.