Answer:
Empirical formula of C₈H₈ = CH
Explanation:
Data Given:
Molecular Formula = C₈H₈
Empirical Formula = ?
Solution
Empirical Formula:
Empirical formula is the simplest ration of atoms in the molecule but not all numbers of atoms in a compound.
So,
tha ration of the molecular formula should be divided by whole number to get the simplest ratio of molecule
C₈H₈ Consist of Carbon (C), and Hydrogen (H)
Now
Look at the ratio of these two atoms in the compound
C : H
8 : 8
Divide the ratio by two to get simplest ratio
C : H
8/8 : 8/8
1 : 1
So for the empirical formula is the simplest ratio of carbon to hydrogen 1 : 1
So the empirical formula will be
Empirical formula of C₈H₈ = CH
Answer:
113.8g
Explanation:
Statement of problem: mass of 1.946mole of NaCl
Given parameters:
Number of moles of NaCl = 1.946mole
Unknown: mass of NaCl
Solution
To find the mass of NaCl, we apply the concept of moles which expresses the relationship between number of moles and mass according to the equation below:
Number of moles = 
To find the molar mass of NaCl:
the atomic mass of Na = 23g
atomic mass of Cl = 35.5g
Molar mass of NaCl = (23 + 35.5) = 58.5gmol⁻¹
Mass of NaCl = Number of moles x molar mass of NaCl
Mass of NaCl = 1.946 x 58.5 = 113.8g
Molarity = Moles/Liter
Use the molecular atomic mass of NaCl to convert from grams to moles.
Molecular mass of NaCl is the sum of its atomic masses. Look at the periodic table to find these. Na is 23 g/mol and Cl is 35.5 g/mol ,
so NaCl = 23 + 35.5 = 58.5 g/mol
multiply to cancel out grams
76 g NaCl * (1mol / 58.5 g NaCl) = 1.3 mol NaCl
over 1 Liter is just 1.3 M NaCl
Hope this helps!
Answer: 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Explanation:
1) Data:
Water ⇒ C = 1 cal/g°C
m = 65.8 g
Ti = 31.5°C
Tf = 36.9°C
Heat, Q = ?
2) Formula:
Q = mCΔT
3) Calculations:
Q = 65.8g × 1 cal/g°C × (46.9°C - 31.5°C) = 1,013.2 cal
4) You can convert from calories to Joules using the conversion factor:
1 cal = 4.18 J
⇒ 1,013.32 cal × 4.18 J/cal = 4,235.68 J
Because when equilibrium is reached, the reaction is still occurring in both directions, it's just that rate(forward) =rate(reverse) so there is no net change in the concentrations of the reactants or products.