Answer:

Explanation:
Consider two particles are initially at rest.
Therefore,
the kinetic energy of the particles is zero.
That initial K.E. = 0
The relative velocity with which both the particles are approaching each other is Δv and their reduced masses are

now, since both the masses have mass m
therefore,

= m/2
The final K.E. of the particles is

Distance between two particles is d and the gravitational potential energy between them is given by

By law of conservation of energy we have

Now plugging the values we get



This the required relation between G,m and d
Answer:
maybe its heat sorry if it's wrong
because if friction is not in the problem so we are making heat or thermal energy
Answer:
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
<em />
<em>In physics, energy is the quantitative property that must be transferred to an object in order to perform work on, or to heat, the object. Energy is a conserved quantity; the law of conservation of energy states that energy can be converted in form, but not created or destroyed.</em>
Explanation:
<h2>
<u><em>HOPE THIS HELPS</em></u></h2>
Hello :))
Mass is dependent on the inertia of an object:))
Hope this helps
Answer:
True
Explanation:
Side affects can range from
Problems with periods to Loss of breasts