The acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
The given parameters;
- mass of the car, m = 1400 kg
- Initial velocity of the car, u = 25 m/s
- coefficient of kinetic friction, μ = 0.7
The acceleration of the car is calculated as follows;
a = μg
a = 0.7 x 9.8
a = 6.86 m/s²
The time taken for the car to stop is calculated by using Newton's second law of motion;
F = ma

Thus, the acceleration of the car is 6.86 m/s² and the time taken for the car to stop is 3.64 s.
Learn more here:brainly.com/question/19887955
1. The problem statement, all variables and given/known data Knowing that snow is discharged at an angle of 40 degrees, determine the initial speed, v0 of the snow at A. Answer: 6.98 m/s 2. Relevant equations 3. The attempt at a solution I have found the x and y velocity and position formulas. Now since I don't know time, should I solve both position equations for time (t) and set them equal to each other to get my only unknown, vi? The quadratic equation for time in the y-dir seems a bit hectic. Is there an easier way to go about trying to find vi?
Answer
-8.67× 10^6 N/C
Explanation:
The Electric Field is defined as force per unit charge.
E = Q/ 4π£r2
Qv= −6.5 μCm3
Qv = Q/ V= Q/ 4/3 πr3
Hence Q = 4/3 πr3 × Qv
Hence E = 4/3 πr3 × Qv / 4π£r2= Qvr/3£
−6.5 μ × 4/ 3×8.854 ×10^-12
-6.5 × 4 × 10^6/3 = -8.67× 10^6 N/C
Note: £ = 8.854×10^-12m/F
is the permittivity of free space
Qv is the charge per unit volume
V is volume and volume
Answer:
566.3 m
Explanation:
The distance travelled by the object can be found by using the SUVAT equation:

where
u is the initial velocity
t is the time
a is the acceleration
For the object in this problem:
u = 19 m/s
a = 2.5 m/s^2
Substituting t = 15 s, we find the distance travelled:
