Answer:
C. They are exergonic and provide energy that can be used to produce ATP form ADP and Pi.
Explanation:
There are 2 types of metabolic reactions.
- Anabolic reactions (Anabolism)
- Catabolic reactions (Catabolism)
CATABOLIC REACTIONS:
They consist of reactions in which larger molecules are broken down into simpler ones. They are exergonic i.e. energy producing reactions. The released energy can be stored in the form of ATP (energy currency of cell).
ANABOLIC REACTIONS:
They consist of reactions in which larger molecules are synthesized from simpler ones. They are endergonic reactions i.e. energy is absorbed.
MEMORY AID:
An easy way to remember catabolic reactions is to think of them as "catastrophic reactions" i.e. larger molecules are destructed to produce simpler ones.
Coming back to the question,
<u>a. They require energy from ATP hydrolysis to break down polymers into monomers. </u>
Energy requiring reactions are anabolic and so this is the incorrect answer.
<u>b. They are endergonic and release energy that can be used for cellular work.</u>
Endergonic reactions are anabolic and hence this is the incorrect answer.
<u>c. They are exergonic and provide energy that can be used to produce ATP from ADP and Pi</u>
This statement correctly fits the definition of Catabolic reactions and is therefore the correct answer.
<u>d. They combine small molecules into larger, more energy-rich molecules.</u>
This statement describes anabolic reactions and hence the incorrect choice.
Answer:
Check the explanation
Explanation:
As we know the reaction of EDTA and
+ and EDTA and
+
Let us say that the ratio is 1:1
Therefore, the number of moles of
+ = molarity * volume
= 0.0400M * 0.011L
= 0.00044 moles
Therefore excess EDTA moles = 0.00044 moles
Given , initial moles of EDTA = 0.0430 M * 0.025 L
= 0.001075
Therefore reacting moles of EDTA with
= 0.001075 - 0.00044 = 0.000675 moles
Let us say that the ratio between
and EDTA is 1:1
Therefore moles of
= 0.000675 moles
Molarity = moles / volume
= 0.000675 moles / 0.057 L
= 0.011 M (answer).
The formula of a compound is 
Given:
The ions
and 
To find:
The formula for ions
and 
Solution:
The ion with a positive charge (cation) = nickel ion = 
The ion with a negative charge (anion) = nitrate ion = 
Valency on nickel ion = 2
Valency on nitrate ion = 1
Using the criss-cross method as shown in image
The formula of a compound : 
The name of a compound is nickel(II) nitrate

The formula of a compound is 
Learn more about ions here:
brainly.com/question/24389121?referrer=searchResults
Both D and G options. Weak base and its conjugate acid or weak acid and its conjugate base are the possible components of a buffer solution.
Explanation:
Buffer solution is the solution which gets easily dissolved in water and so called as "Aqueous solution".
Buffer solution is essentially made up of two components Known as:
i.) Weak base and its conjugate acid
ii.) Weak acid and its conjugate base
This weak acid and base solution is used to maintain the pH value of the solution in a balanced way.
When the weak acid or base solution is added to strong acid or base solution that is the way pH gets balanced .
In one word buffer solution is the solution which resists for the pH change when strong acids or bases are added.