Scientists expected that the law of conservation of mass would apply to nuclear fission in terms of the masses of the subatomic particles. In reality, the mass of an atom is not equal to the sum of the masses of the subatomic particles that make it up. This is because of the energy that binds the subatomic particles. This energy has mass and when the bond is broken, the mass of the energy of the bonds is lost resulting to what we now cal, a mass defect.
Answer:
All of the above
Explanation:
(I'm assuming you meant to put Australia in the options)
Australia is in the southern hemisphere and has its summer in December etc. and Winter in July etc.
China is in the northern hemisphere and has its summer in July etc and Winter in December etc.
Answer:

How does a balanced chemical equation verify the law of conservation of matter?

According to the Law conservation of matter
Mass can neither be created nor destroyed in a chemical reaction. That is, the total mass of the elements present in the products of a chemical reaction has to be equal to the total mass of the elements present in the reactants. In other words, the number of atoms of each element remains the same, before and after a chemical reaction. Hence, we need to balance the skeletal chemical equation.

Answer:
universal mass unit
<h2 />
The universal mass unit, abbreviated u (sometimes amu for atomic mass unit), is defined as one-twelfth of the mass of the 12C atom which has been defined to be exactly 12 u. The absolute mass of a 12C atom is obtained by dividing the value 12 by the Avogadro number (NA = 6.022 137 × 1023).
Answer:
12 L of O₂
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
CS₂ + 3O₂ —> CO₂ + 2SO₂
From the balanced equation above,
3 L of O₂ reacted to produce 1 L of CO₂.
Finally, we shall determine the volume of O₂ required to produce 4 L of CO₂. This can be obtained as follow:
From the balanced equation above,
3 L of O₂ reacted to produce 1 L of CO₂.
Therefore, xL of O₂ will react to produce 4 L of CO₂ i.e
xL of O₂ = 3 × 4
xL of O₂ = 12 L
Thus, 12 L of O₂ is needed for the reaction.