Balanced chemical equation is - 3Fe2+ + NO3- + 4H+ → 3Fe3+ + NO + 2H2O
Fe2+ + NO3- + H+ → Fe3+ + NO3- + NO + H2O
Fe+22+ + N+5O-23- + H+1+ → Fe+33+ + N+5O-23- + N+2O-2 + H+12O
3Fe2+ + NO3- + 4H+ → 3Fe3+ + NO + 2H2O
A balanced chemical equation specifies the quantities of reactants and products required to meet the Law of Conservation of Mass. This signifies that there is the same number of each sort of atom on the left side of the equation as there are on the right side. The rule of a balanced chemical equation is used to determine if two weights put on opposing sides of the fulcrum will balance each other.
To learn more Balanced chemical equations about please visit -
brainly.com/question/15052184
#SPJ4
Answer:
Partial pressure of He = 73 kPa
Explanation:
Given:
Total pressure = 125 kPa
Partial pressure of Ne = 31 kPa
Partial pressure of Kr = 21 kPa
Find:
Partial pressure of He
Computation:
Total pressure = Partial pressure of Ne + Partial pressure of Kr + Partial pressure of He
125 kPa = 31 kPa + 21 kPa + Partial pressure of He
Partial pressure of He = 73 kPa
Sodium phosphate = Na₃PO₄
phosphorus triiodide = PI3
hope this helps. make brainliest please!
Answer: C) 0.020 m
Explanation:
Molality of a solution is defined as the number of moles of solute dissolved per kg of the solvent.

where,
n = moles of solute
= weight of solvent in g
Mole fraction of
is =
i.e.
moles of
is present in 1 mole of solution.
Moles of solute
= 
moles of solvent (water) = 1 -
= 0.99
weight of solvent =
Molality =
Thus approximate molality of
in this solution is 0.020 m
Answer:
there are 12 atoms in 12 sodium bromide