1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nookie1986 [14]
4 years ago
7

Two positive charges are labeled q Subscript 1 baseline and q Subscript 2 baseline are 0.1 m apart. Two positively charged parti

cles are separated on an axis by 0.1 meters, and q1 has a 6 µC charge and q2 has a 2 µC charge. Recall that k = 8.99 × 109 N • meters squared over Coulombs squared.. What is the force applied between q1 and q2 in N? In which direction does particle q2 want to go?
Physics
1 answer:
Snowcat [4.5K]4 years ago
4 0

Answer:

Explanation:

Let that point be at a distance x from q1

Then Kq1/x^2= Kq2/ (s-x)^2

Taking square roots and simplifying, x =s /[1+(q2/q1)^0.5]

Assuming an identical distance, the rigidity of Q on 2Q is equivalent in value to the rigidity of 2Q on Q. for that reason, had the area R been stored an identical, the two forces could be equivalent. inspite of the shown fact that, via fact the area is being decreased, we could constantly consult with the equation we use to calculate those forces: F = ok(Q1xQ2)/(R^2) because R is squared and is being halved, the final result's that's it being divided by potential of a million/4. for that reason, the rigidity would be expanded by potential of four, and be 4F.

You might be interested in
A standing wave on a string that is fixed at both ends has frequency 80.0 Hz. The distance between adjacent antinodes of the sta
Bingel [31]

Answer:

Speed of the wave in the string will be 3.2 m/sec

Explanation:

We have given frequency in the string fixed at both ends is 80 Hz

Distance between adjacent antipodes is 20 cm

We know that distance between two adjacent anti nodes is equal to half of the wavelength

So \frac{\lambda }{2}=20cm

\lambda =40cm

We have to find the speed of the wave in the string

Speed is equal to v=\lambda f=0.04\times 80=3.2m/sec

So speed of the wave in the string will be 3.2 m/sec

4 0
3 years ago
A thin spherical spherical shell of radius R which carried a uniform surface charge density σ. Write an expression for the volum
ozzi

Answer:

Explanation:

From the given information:

We know that the thin spherical shell is on a uniform surface which implies that both the inside and outside the charge of the sphere are equal, Then

The volume charge distribution relates to the radial direction at r = R

∴

\rho (r) \  \alpha  \  \delta (r -R)

\rho (r) = k \  \delta (r -R) \ \  at \ \  (r = R)

\rho (r) = 0\ \ since \ r< R  \ \ or  \ \ r>R---- (1)

To find the constant k, we  examine the total charge Q which is:

Q = \int \rho (r) \ dV = \int \sigma \times dA

Q = \int \rho (r) \ dV = \sigma \times4 \pi R^2

∴

\int ^{2 \pi}_{0} \int ^{\pi}_{0} \int ^{R}_{0} \rho (r) r^2sin \theta  \ dr \ d\theta \ d\phi = \sigma \times 4 \pi R^2

\int^{2 \pi}_{0} d \phi* \int ^{\pi}_{0} \ sin \theta d \theta * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

(2 \pi)(2) * \int ^{R}_{0} k \delta (r -R) * r^2dr = \sigma \times 4 \pi R^2

Thus;

k * 4 \pi  \int ^{R}_{0}  \delta (r -R) * r^2dr = \sigma \times  R^2

k * \int ^{R}_{0}  \delta (r -R)  r^2dr = \sigma \times  R^2

k * R^2= \sigma \times  R^2

k  =   R^2 --- (2)

Hence, from equation (1), if k = \sigma

\mathbf{\rho (r) = \delta* \delta (r -R)  \ \  at   \ \  (r=R)}

\mathbf{\rho (r) =0 \ \  at   \ \  rR}

To verify the units:

\mathbf{\rho (r) =\sigma \ *  \ \delta (r-R)}

↓         ↓            ↓

c/m³    c/m³  ×   1/m            

Thus, the units are verified.

The integrated charge Q

Q = \int \rho (r) \ dV \\ \\ Q = \int ^{2 \ \pi}_{0} \int ^{\pi}_{0} \int ^R_0 \rho (r) \ \ r^2 \ \  sin \theta  \ dr \ d\theta \  d \phi  \\ \\  Q = \int ^{2 \pi}_{0} \  d \phi  \int ^{\pi}_{0} \ sin \theta  \int ^R_{0} \rho (r) r^2 \ dr

Q = (2 \pi) (2) \int ^R_0 \sigma * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  \int ^R_0  * \delta (r-R) r^2 \ dr

Q = 4 \pi  \sigma  *R^2    since  ( \int ^{xo}_{0} (x -x_o) f(x) \ dx = f(x_o) )

\mathbf{Q = 4 \pi R^2  \sigma  }

6 0
3 years ago
Waves are observed passing under a dock. Wave crests are 8.0 meters apart. The time for a complete wave to pass by is 4.0 second
Debora [2.8K]
<h3><u>Answer;</u></h3>

The period of the wave is <u><em>4 seconds</em></u>

<h3><em><u>Explanation;</u></em></h3>
  • <em><u>The period of a wave or periodic time is the time taken for one complete oscillation to occur.</u></em> In this case, one complete oscillation occurs when the wave moves from one crest to the next or a trough to the next. <em><u>This takes 4 seconds. Therefore the period is 4 seconds.</u></em>
  • <em><u>Frequency on the other hand is the number of oscillations by a wave in one second. Thus, f = 1/T, that is frequency is the reciprocal of periodic time.</u></em>
4 0
3 years ago
Read 2 more answers
Plates move apart at ____ boundaries.
Keith_Richards [23]
<span>The correct answer is C. divergent. Divergent boundaries are something like lines found between two tectonic plates. These constructive boundaries, or extensional boundaries, are formed and exist between two tectonic plates that move away from each other. Convergent would thus be where they meet. This is all according to the tectonic theory.</span>
5 0
3 years ago
Read 2 more answers
A 93.5 kg snowboarder starts from rest and goes down a 60 degree slope with a 45.7 m height to a rough horizontal surface that i
frosja888 [35]

Answer:

a. 29.9 m/s, b. 29.6 m/s, c. 44.7 m

Explanation:

This can be answered with either force analysis and kinematics, or work and energy.

a) Using force analysis, we can draw a free body diagram for the snowboarder.  There are two forces: normal force perpendicular to the slope and gravity down.

Sum of the forces parallel to the slope:

∑F = ma

mg sin θ = ma

a = g sin θ

Therefore, the velocity at the bottom is:

v² = v₀² + 2a(x - x₀)

v² = (0)² + 2(9.8 sin 60°) (45.7 / sin 60° - 0)

v = 29.9 m/s

Alternatively, using energy:

PE = KE

mgh = 1/2 mv²

v = √(2gh)

v = √(2×9.8×45.7)

v = 29.9 m/s

b) Drawing a free body diagram, there are three forces on the snowboarder.  Normal force up, gravity down, and friction to the left.

Sum of the forces in the y direction:

∑F = ma

N - mg = 0

N = mg

Sum of the forces in the x direction:

∑F = ma

-F = ma

-Nμ = ma

-mgμ = ma

a = -gμ

Therefore, the snowboarder's final speed is:

v² = v₀² + 2a(x - x₀)

v² = (29.9)² + 2(-9.8×.102) (10 - 0)

v = 29.6 m/s

Using energy instead:

KE = KE + W

1/2 mv² = 1/2 mv² + F d

1/2 mv² = 1/2 mv² + mgμ d

1/2 v² = 1/2 v² + gμ d

1/2 (29.9)² = 1/2 v² + (9.8)(0.102)(10)

v = 29.6 m/s

c) This is the same as part a, but this time, the weight component parallel to the incline is pointing left.

∑F = ma

-mg sin θ = ma

a = -g sin θ

Therefore, the final height reached is:

v² = v₀² + 2a(x - x₀)

(0)² = (29.6)² + 2(-9.8 sin 30°) (h / sin 30° - 0)

h = 44.7 m

Using energy:

KE = PE

1/2 mv² = mgh

h = v² / (2g)

h = (29.6)² / (2×9.8)

h = 44.7 m

3 0
4 years ago
Other questions:
  • This experiment was divided into two parts. For the first part of the experiment, the was intentionally manipulated. This was th
    14·2 answers
  • Through what process does water leave the hydrosphere and enter the atmosphere
    6·1 answer
  • It is generally a good idea to gain an understanding of the "size" of units. Consider the objects listed and calculate the magni
    11·1 answer
  • A lightning bolt may carry a current of 1.00 104 A for a short time. What is the resulting magnetic field 120 m from the bolt
    7·2 answers
  • To start a lawn mower, you must pull on a rope wound around theperimeter of a flywheel. After you pull the rope for 0.95 s, thef
    10·1 answer
  • Please help me with this Q
    11·1 answer
  • Even though you are getting closer to the sun as you ascend into the troposphere, why does the temperature drop? the lower atmos
    11·2 answers
  • Assume that, as the battery wears out, the voltage decreases at 0.03 volts per second and, as the resistor heats up, the resista
    7·1 answer
  • In order to define speed direction is not important true or false
    9·2 answers
  • Stephen schwartz created the musical godspell as well as __________.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!