Answer:
3.46 seconds
Explanation:
Since the ball is moving in circular motion thus centripetal force will be acting there along the rope.
The equation for the centripetal force is as follows -
Where,
is the mass of the ball,
is the speed and
is the radius of the circular path which will be equal to the length of the rope.
This centripetal force will be equal to the tension in the string and thus we can write,

and, 
Thus,
m/s.
Now, the total length of circular path = circumference of the circle
Thus, total path length = 2πr = 2 × 3.14 × 2 = 12.56 m
Time taken to complete one revolution =
=
= 3.46 seconds.
Thus, the mass will complete one revolution in 3.46 seconds.
Answer:
<em>Billow clouds provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents.</em>
Explanation:
Billow clouds are created in regions that are not stable in a meteorological sense. They are frequently present in places with air flows, and have marked vertical shear and weak thermal separation and inversion (colder air stays on top of warmer air). Billow clouds are formed when two air currents of varying speeds meet in the atmosphere. They create a stunning sight that looks like rolling ocean waves. Billow clouds have a very short life span of minutes but they provide a visible signal to aviation interests of potentially dangerous turbulent sky since they indicate instability in air currents, which although may not affect us on the ground but is a concern to aircraft pilots. The turbulence due to the Billow wave is the only logical explanation for the loss of 500 m in altitude of the plane.
(a) The moment of inertia of the wheel is 78.2 kgm².
(b) The mass (in kg) of the wheel is 1,436.2 kg.
(c) The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
<h3>
Moment of inertia of the wheel</h3>
Apply principle of conservation of angular momentum;
Fr = Iα
where;
- F is applied force
- r is radius of the cylinder
- α is angular acceleration
- I is moment of inertia
I = Fr/α
I = (200 x 0.33) / (0.844)
I = 78.2 kgm²
<h3>Mass of the wheel</h3>
I = ¹/₂MR²
where;
- M is mass of the solid cylinder
- R is radius of the solid cylinder
- I is moment of inertia of the solid cylinder
2I = MR²
M = 2I/R²
M = (2 x 78.2) / (0.33²)
M = 1,436.2 kg
<h3>Angular speed of the wheel after 4 seconds</h3>
ω = αt
ω = 0.844 x 4
ω = 3.376 rad/s
Thus, the moment of inertia of the wheel is 78.2 kgm².
The mass (in kg) of the wheel is 1,436.2 kg.
The angular speed (in rad/s) of the wheel at the end of this time period is 3.376 rad/s.
Learn more about moment of inertia here: brainly.com/question/14839816
#SPJ1
It is incorrect, because the identity of the original product has changed. Ca3(OH)2 does not exist! It is no longer calcium hydroxide. To balance an equation, you must manipulate the coefficients, a.k.a. the big numbers that go before reactants or products. Subscripts, the little numbers inside the reactants or products, cannot be changed without completely changing the substance.