Answer:
Δμ = hΔf/B
Explanation:
If the photon energy , ΔE = hΔf where Δf = small frequency shift and since the potential energy change of the magnetic dipole moment μ in magnetic field B from parallel to anti-parallel state is ΔU = ΔμB. where Δμ = small shift in magnetic moment.
Since the magnetic energy change equals the photon energy,
ΔE = ΔU
hΔf = ΔμB
Δμ = hΔf/B
Answer:
Solution:
we have given the equation of motion is x(t)=8sint [where t in seconds and x in centimeter]
Position, velocity and acceleration are all based on the equation of motion.
The equation represents the position. The first derivative gives the velocity and the 2nd derivative gives the acceleration.
x(t)=8sint
x'(t)=8cost
x"(t)=-8sint
now at time t=2pi/3,
position, x(t)=8sin(2pi/3)=4*squart(3)cm.
velocity, x'(t)=8cos(2pi/3)==4cm/s
acceleration, x"(t)==8sin(2pi/3)=-4cm/s^2
so at present the direction is in y-axis.
ANSWER:
The study and analysis of light according to its component wavelengths is called spectroscopy.
EXPLANATION:
Spectroscopy is the branch of science that is concerned with the investigation and measurement of spectrum produced when matter interacts with or emits electromagnetic radiation.It helps us to identify atoms and molecules in the object.Spectroscopy is used to find out Dopplers effect (the red shift and blue shift),which tells how fast the object is comming towards earth or moving away from the earth.
Answer:2. The number of miles driven and the amount of gas used.
Explanation:
Explanation:
Assuming we can turn on the lightbulb from any distance with a device. We can gradually increase the distance that separates us from lightbulb, in this way, if the speed of light is finite we can see a temporary delay between the moment we turn on the lightbulb and the moment in which we observe its light.