<span>A carbon - 12 atom and a
regular carbon atom would have the same number of protons which is 6. So a
carbon - 12 atom would have 6 protons. Both, however, would differ in the
number of neutrons. Carbon - 12 atom has 6 neutrons. To determine the mass
defect of a carbon - 12 atom, we have to add the total mass of protons and the
total mass of neutrons and subtract the known mass of a carbon - 12 atom. That
would be like this.<span>
6
(1.00728 amu) + 6 (1.00866 amu) = x
<span>6.04368
amu<span> + 6.05196 amu = x</span></span>
12.09564
amu = x
Then
subtract it with 12 amu to get the defect mass
12.09564
amu - 12.00000 amu = y
0.09564
amu = y
<span>So the
defect mass would be 0.09564 amu.</span></span></span>
It's a chemical change because bonds are being broken and formed.
Answer:
V₂ = 18.13 L
Explanation:
Given data:
Mole of gas = 1 mol
Initial temperature = 273 K
Initial pressure = 1 atm
Final volume = ?
Final temperature = -41°C (-41+273 = 232 K)
Final pressure = 805 mmHg (805/760 = 1.05 atm)
Solution:
First of all we will calculate the initial volume of gas.
PV = nRT
V = nRT/P
V = 1 mol × 0.0821 mol.L/atm.K × 273 K / 1 atm
V = 22.4 L/atm / 1 atm
V = 22.4 L ( initial volume)
Now we will determine the final volume by using equation,
P₁V₁/T₁ = P₂V₂/T₂
P₁ = Initial pressure
V₁ = Initial volume
T₁ = Initial temperature
P₂ = Final pressure
V₂ = Final volume
T₂ = Final temperature
Now we will put the values.
V₂ = P₁V₁ T₂/ T₁ P₂
V₂ = 1 atm × 22.4 L × 232 K / 273 K × 1.05 atm
V₂ = 5196.8 atm .L. K / 286.65 atm.K
V₂ = 18.13 L
Calculus, originally called infinitesimal calculus or "the calculus of infinitesimals", is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
Answer:
Yes
Explanation:
An object's weight can change, depending on its location, relative to the object of discussion. For example, we don't notice the change, but the farther away we are from Earth's core, the less we weigh. This means one would weigh more in a valley than they would on a mountain. The formula for gravity is F=G((msub1)(msub2)/r^2), where F is the force of attraction, G is the universal gravitational constant, msub1 is the mass of the first object, msub2 is the mass of the second object, and r is the distance between the two objects.