Answer:
806.3g
Explanation:
Given parameters:
Number of moles of silver nitrate = 4.85mol
Unknown:
Mass of silver chromate = ?
Solution:
2AgNO₃ + Na₂CrO₄ → Ag₂CrO₄ + 2NaNO₃
To solve this problem, we work from the known to the unknown;
- The known specie here is AgNO₃ ;
From the balanced chemical equation;
2 moles of AgNO₃ will produce 1 mole of Ag₂CrO₄
4.85 moles of AgNO₃ will produce
= 2.43moles of Ag₂CrO₄
- Mass of silver chromate produced;
mass = number of moles x molar mass
Molar mass of Ag₂CrO₄
Atomic mass of Ag = 107.9g/mol
Cr = 52g/mol
O = 16g/mol
Input the parameters and solve;
Molar mass = 2(107.9) + 52 + 4(16) = 331.8g/mol
So,
Mass of Ag₂CrO₄ = 2.43 x 331.8 = 806.3g
260 miles with 12 gallons of gas
260 miles/12 gallons=21.6667 miles/1 gallon
286 miles/(21.6667 miles/1 gallon)=13.2 gallons of gas
Answer:
D. 1.48atm
Explanation:
Van der waals equation is given as:
(P +an²/v²) (v - nb) = nRT
Where;
P = pressure (atm)
V = volume (L)
R = gas constant (0.0821 Latm/molK)
a and b = gas constant specific to each gas
T = temperature (K)
n = number of moles
According to the given information; V = 22.4L, T = 0.00°C (273.15K), R = 0.0821 Latm/molK, a = 6.49L^2-atm/mol^2, b = 0.0562 L/mol, n = 1.5mol
Hence;
(P + 6.49 × 1.5²/22.4²) (22.4 - 1.5×0.0562) = 1.5 × 0.0821 × 273.15
(P + 6.49 × 2.25/501.76) (22.4 - 0.0843) = 33.638
(P + 0.0291) (22.316) = 33.638
22.316P + 0.649 = 33.638
22.316P = 33.638 - 0.649
22.316P = 32.989
P = 32.989/22.316
P = 1.478
P = 1.48atm
The only answer we can choose
<span>B.
energy needed to break chemical bonds.</span>