1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
loris [4]
3 years ago
11

A 2kg block is sitting on a hinged ramp such that you can increase the angle of the incline. The coefficient of static friction

between the block and the ramp is 0.67 and the coefficient of kinetic friction is 0.25.
a. What angle do you have to tilt the ramp to get the block to slide?
b. What acceleration does the block experience at this angle when kinetic friction takes over?

Physics
1 answer:
MariettaO [177]3 years ago
7 0

Answer:

θ = 33.8

a = 3.42 m/s²

Explanation:

given data

mass m = 2 kg  

coefficient of static friction μs = 0.67

coefficient of kinetic friction μk = 0.25

solution

when block start slide

N = mg cosθ    .............1

fs = mg sinθ   ...............2

now we divide equation 2 by equation 1 we get

\frsc{fs}{N} = \frac{sin \theta }{cos \theta }

\frac{\mu s N }{N}  = tanθ

put here value we get

tan θ = 0.67

θ = 33.8

and

when block will slide  then we apply newton 2nd law

mg sinθ - fk = ma    ...............3

here fk = μk N = μk mg cosθ

so from equation 3 we get

mg sinθ -  μk mg cosθ = ma

so a will be

a = (sinθ - μk cosθ)g

put here value and we get

a = (sin33.8 - 0.25 cos33.8) 9.8

a = 3.42 m/s²

You might be interested in
Select all of the answers that apply.
galben [10]
<span>The answers are --

a
) wind direction
b) wind speed
e) intensity of precipitation
f) location of precipitation</span>
6 0
3 years ago
Read 2 more answers
A student read his right ear against his desk while Teacher talks loudly on the desk and can hear the tapping sound only through
sladkih [1.3K]

Answer:

The student hears the wave that is transmitted by the desk

Explanation:

Mechanical waves need a material medium to be able to be transmitted, in the case of sound waves, one of the most common media is air, but it is also transmitted in other media in this case, stationery is transmitted.

The student hears the wave that is transmitted by the desk

The speed of the wave is proportional to the density of the material, so the wave that the student hears arrives much faster through the desk than through the air

6 0
2 years ago
You've been tired and lethargy what are two possible reasons?
dybincka [34]

Explanation:

physical exertion.

lack of physical activity.

lack of sleep.

being overweight or obese.

periods of emotional stress.

boredom.

grief.

taking certain medications, such as antidepressants or sedatives.

5 0
3 years ago
A 100 kg roller coaster comes over the first hill at 2 m/sec (vo). The height of the first hill (h) is 20 meters. See roller dia
aleksandr82 [10.1K]

For the 100 kg roller coaster that comes over the first hill of height 20 meters at 2 m/s, we have:

1) The total energy for the roller coaster at the <u>initial point</u> is 19820 J

2) The potential energy at <u>point A</u> is 19620 J

3) The kinetic energy at <u>point B</u> is 10010 J

4) The potential energy at <u>point C</u> is zero

5) The kinetic energy at <u>point C</u> is 19820 J

6) The velocity of the roller coaster at <u>point C</u> is 19.91 m/s

1) The total energy for the roller coaster at the <u>initial point</u> can be found as follows:

E_{t} = KE_{i} + PE_{i}

Where:

KE: is the kinetic energy = (1/2)mv₀²

m: is the mass of the roller coaster = 100 kg

v₀: is the initial velocity = 2 m/s

PE: is the potential energy = mgh

g: is the acceleration due to gravity = 9.81 m/s²

h: is the height = 20 m

The<em> total energy</em> is:

E_{t} = KE_{i} + PE_{i} = \frac{1}{2}mv_{0}^{2} + mgh = \frac{1}{2}*100 kg*(2 m/s)^{2} + 100 kg*9.81 m/s^{2}*20 m = 19820 J

Hence, the total energy for the roller coaster at the <u>initial point</u> is 19820 J.

   

2) The <em>potential energy</em> at point A is:

PE_{A} = mgh_{A} = 100 kg*9.81 m/s^{2}*20 m = 19620 J

Then, the potential energy at <u>point A</u> is 19620 J.

3) The <em>kinetic energy</em> at point B is the following:

KE_{A} + PE_{A} = KE_{B} + PE_{B}

KE_{B} = KE_{A} + PE_{A} - PE_{B}

Since

KE_{A} + PE_{A} = KE_{i} + PE_{i}

we have:

KE_{B} = KE_{i} + PE_{i} - PE_{B} =  19820 J - mgh_{B} = 19820 J - 100kg*9.81m/s^{2}*10 m = 10010 J

Hence, the kinetic energy at <u>point B</u> is 10010 J.

4) The <em>potential energy</em> at <u>point C</u> is zero because h = 0 meters.

PE_{C} = mgh = 100 kg*9.81 m/s^{2}*0 m = 0 J

5) The <em>kinetic energy</em> of the roller coaster at point C is:

KE_{i} + PE_{i} = KE_{C} + PE_{C}            

KE_{C} = KE_{i} + PE_{i} = 19820 J      

Therefore, the kinetic energy at <u>point C</u> is 19820 J.

6) The <em>velocity</em> of the roller coaster at point C is given by:

KE_{C} = \frac{1}{2}mv_{C}^{2}

v_{C} = \sqrt{\frac{2KE_{C}}{m}} = \sqrt{\frac{2*19820 J}{100 kg}} = 19.91 m/s

Hence, the velocity of the roller coaster at <u>point C</u> is 19.91 m/s.

Read more here:

brainly.com/question/21288807?referrer=searchResults

I hope it helps you!

3 0
3 years ago
If a cart of a roller coaster has a mass of 250kg and is at a height of 14 meters. What is the cart's potential energy?
ahrayia [7]

Answer:

3430000 J

Explanation:

The formula for potential energy is PE=mgh.

M being the mass, g being the force of gravity, and h being the height.

First thing you want to do is convert 250 kg to g (grams).

From there you get 25000g and you have to multiply that by 14m and 9.8m/s^2 (the force of gravity is constant, at least on earth).

5 0
3 years ago
Other questions:
  • A 10 kg mass rests on a table. What acceleration will be generated when a force of 20 N is applied and encounters a frictional f
    12·1 answer
  • How many total atoms are in one molecule of lithium nitrate, LiNO3? 1 3 5 7 6
    9·2 answers
  • A jet plane flying 600 m/s experiences an acceleration of 4.0 g when pulling out of the circular section of a dive. What is the
    12·1 answer
  • How do we find the acceleration from a velocity vs. time graph
    15·1 answer
  • During a race the dirt bike was observed to leap up off the small hill at A at an angle of 60^o with the horizontal. If the poin
    8·1 answer
  • I REALLY NEED HELP.....PLEASE SOMEONE!!!
    5·1 answer
  • PLEASE HELP ASAPPPPPPPPP
    13·1 answer
  • Kinetic energy is the energy of an object in motion. Potential energy is the energy associated with an object
    11·1 answer
  • 3. Automobile companies often test the safety of cars by putting them through crash tests to observe the integrity of the passen
    15·1 answer
  • A child is stationary on a swing.(a)The child is given a push by his brother to start him swinging.His brother applies a steady
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!