<span>The gravitational pull of the sun and moon combined
create larger than normal tides.</span>
For simplicity, let's call vector B-A vector C Then C is
Cx = (-6.1 - 2.2)
Cy = (-2.2 - (-6.9)) Or,
Cx = -8.3 Cy = 4.7
The magnitude is found with the Pythagorean theorem
||C|| = √(-8.3² + 4.7²) = 9.538
Answer:
The car manufacturers could increase bore of the cylinders, place the engine in the center or back of the car, add 1 to 2 turbochargers, and lower the center of gravity of the vehicle to increase traction.
Explanation:
Turbochargers would be recommended because they significantly increase both the torque of the engine as well as the amount of horses powering the car while also increasing original efficiency both with and without the additional power. Weight adjustment allows for lightweight vehicles with good traction. This is important to both keep control of the car under acceleration, but it also makes the vehicle more efficient due to the now sheddable unnecessary weight. A more obvious approach would be to increase the base horsepower and torque of the engine by increasing the bore of the cylinders and the weight of the pistons. This acts as an inertial lever, because the extra piston weight will drag the crankshaft faster. This could also be achieved by taking away piston weight, but this could be catastrophic should a piston slip.
Answer:
power requirement is 23.52 ×
W
Explanation:
given data
flow rate q = 2 m³/s
elevation h = 1200 m
density of the water ρ = 1000 kg/m³
to find out
power requirement
solution
we will get power by the power equation that is
power = ρ× Q× g× h ...................1
put here all value we get power
power = ρ× Q× g× h
power = 1000 × 2 × 9.8 × 1200
power = 23.52 ×
so power requirement is 23.52 ×
W