Answer:
Its heat capacity is higher than that of any other liquid or solid, its specific heat being 1 cal / g, this means that to raise the temperature of 1 g of water by 1 ° C it is necessary to provide an amount of heat equal to a calorie . Therefore, the heat capacity of 1 g of water is equal to 1 cal / K.
Explanation:
The water has a very high heat capacity, a large amount of heat is necessary to raise its temperature 1.0 ° K. For biological systems this is very important because the cellular temperature is modified very little in response to metabolism. In the same way, aquatic organisms, if water did not possess that quality, would be very affected or would not exist.
This means that a body of water can absorb or release large amounts of heat, with little temperature change, which has a great influence on the weather (large bodies of water in the oceans take longer to heat and cool than the ground land). Its latent heats of vaporization and fusion (540 and 80 cal / g, respectively) are also exceptionally high.
Is a process in which One set of substances, called REACTANTS, is converted to a new set of substances is called PRODUCTS.
--In other words, a chemical reaction is the process by which a chemical change occurs.
The work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
<h3>What is normal force?</h3>
The force of contact is called the normal force. When the two surfaces are in contact with each other, then the normal force acts.
This force is applied by the solid bodies on each other in order to prevent the passing through each other.
A box slides down a frictionless incline, gaining speed. For this box, the value of work done by normal force has to be found out. Let's analyze the given condition.
- The body is gaining the speed, which means there is a change in kinetic energy.
- The change in kinetic energy is equal to the work done.
- The friction force is the product of coefficient of the friction and normal force.
- The friction force for the given case is zero. Thus, the normal force must be equal to the zero.
Thus, the work done by the normal force n when the box slides down a frictionless incline and gaining speed is zero.
Learn more about the normal force here;
brainly.com/question/10941832
Answer:
From the second law of motion:
F = ma
we are given that the force applied on the block is 20N and the block accelerates at an acceleration of 4 m/s/s
So, F= 20N and a = 4 m/s/s
Replacing the variables in the equation:
20 = 4* m
m = 20 / 4
m = 5 kg
<span>The answers are:
bulb, motor, buzzer and swtich.As seen in the picture attached,
The electric current leaves the battery passes through
the bulb. It then travels through the
motor, next through the
buzzer and finally passes through the
switch before returning to the battery.</span>