Givens
=====
V
= 4.00 L
T
= 273oK We're assuming the temperature does not change, just the
pressure.
n
= 0.864 moles
R
= 8.314 joules / mole * oK
P
= ?????
Formula
======
PV
= n*R*T
P
= n*R*T/V
P
= 0.864 * 8.314 * 273 / 4
P
= 490 kpa
You
have to add 1.6 – 0.864 = 0.736 moles of gas.
We
have to assume that the temperature and pressure remain the same when
we add the 0.736 moles of gas. We are now looking for the volume.
PV
= n*R*T
<span>
V
= 0.736 * 8.314 * 273 / 490</span>
V
= 3.41 L Remember this is at about 4 atmospheres so we have to
convert to Standard Pressure.
Total
Volume = 3.41 + 4.00 = 4.41
V1
* P1 = V2 * P2
P1
= 490 kPa
P2
= 101 kPa
V1
= 7.41 L
V2
= ????
<span>
<span>
7.41*
490 = V2 * 101
V2
= 7.41 * 490 / 101
V2
= 35.94 L
</span>
</span>
<span>You
had 4 L now you need 31.94 more.</span>
B.
It can go from very hot to very cold, it depends on the area of the moon and where the sunlight hits.
The term you need to know is equilibrium. Technically it means that heat gained = heat lost. Normally in beginning chemistry classes the evidence for this condition is a stable temperature.
If i'm wrong sorry but i think it is 24hrs
Adding thermal energy
Performing work on the system