Base on your question where as a mass m is 15kg is pulled along a horizontal floor, with a coefficient of kinetic friction 0.06 and for a distance of D = 8.5 so the ask of the problem is to calculate the work done by tension before the bock. <span>Base on my calculation and through step by step procedure and with the guidance of the theories and by the use of formulas, I came up with an answer of 313 joules. </span>
Answer:
The crate was being lifted by a height of 1.48 meters.
Explanation:
In an attempt o move a crate;
Force applied = 2470 N
Work done by the force = 3650 J
We know that the work done is defined as the force used to move an object to a distance.
Given the Force used and the work done by that Force, we need to find out the distance the crate was lifted to.
Work done is defined as:
Work = Force*distance covered in the direction of the force
3650 = 2470*distance
distance = 3650/2470
distance = 1.48 meters
Answer:
D
Explanation:
By law of conservation of momentum:
momentum before collision = momentum after collision

Initial speed of bullet is unknown whereas initial speed of pendulum will be zero as it was at rest.
Final speed of bullet and pendulum will be equal as bullet is embedded in pendulum and both moves together a vertical distance of 6.89cm.
Using third equation of motion:

where:

Thus by placing values 
this speed will be final speed of collision for the calculation of initial speed of bullet.
Putting values:

This 224m/s = 0.224Km/s which is closest to D
The equation for potassium in water is:
K(s) + H20(l) --> H2(g) + K20(aq)
since a element and a compound are reacting, this is a single replacement reaction - which is a)
A volt/amp is also know as a volt ampere