Answer:
The velocity of the fish hitting the ground is , v = 45.795 m/s
Explanation:
Given data,
The mass of the fish, m = 5 kg
The height of the bird from the surface, h = 107 m
Using the III equation of motion,
v² = u² + 2gs
<em> v = √(u² + 2gs)</em>
Substituting the values,
v = √(0² + 2 x 9.8 x 107)
= 45.795 m/s
Hence, the velocity of the fish hitting the ground is, v = 45.795 m/s
Elliptical, because the shape of the galaxy isn’t like the others. It is unique to its own and doesn’t have another to compare to
Answer:If an object's speed changes, or if it changes the direction it's moving in,
then there must be forces acting on it. There is no other way for any of
these things to happen.
Once in a while, there may be a group of forces (two or more) acting on
an object, and the group of forces may turn out to be "balanced". When
that happens, the object's speed will remain constant, and ... if the speed
is not zero ... it will continue moving in a straight line. In that case, it's not
possible to tell by looking at it whether there are any forces acting on it
Answer:-6800J
Explanation: 8.0m x 850N = 6800
Rewritten as a negative when brake/stop -6800