Answer:
a) 1.25e15 kg
b) 4.17e20 J
c) 44.55 years
Explanation:
To find the volume you need to multiply 218 km * 25 km * 250 m (be careful with units), so the volume is 1.3625e12 m^3, if you multiply this value by the density you will obtain the mass, that is 1.25e15 kg.
To find the energy needed to melt the ice, you use the latent heat, in this case, it is 3.34e5 J/kg. Now you multiply this value by the mass, so you need 4.17e20 J to melt the iceberg.
The surface area of the iceberg is 545e7 m^2, so the ice absorbs 594e9 W, one W is one J/s, so in 12 hours the iceberg absorbs 2.56e16 J, so in 365 days absorbs 9.36e18 J. Now you just divide 4.17e20 J by the amount f energy per year, and obtain 44.55 years.
Answer:
572.3 nm
Explanation:
= refractive index of the oil film = 1.48
= thickness of the oil film = 290 nm
= wavelength of the dominant color
m = order
Using the equation

For m = 0

= 1716.8 nm
For m = 1

= 572.3 nm
For m = 2

= 343.4 nm
Hence the dominant color wavelength is 572.3 nm
Work is defined as a Newton * meter.
In both cases less energy is required
But comparetively Mg require more energy than K
Let's see the electron configuration of Both
- [Mg]=1s²2s²2p⁶3s²=[Ne]3s²
- [K]=1s²2s²2p⁶3s²3p⁶4s¹=[Ar]4s¹
K has only one valence electron so very less ionization enthalpy so less energy required
Mg has 2 so more IE hence more energy required