Answer:
0.144M
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
HNO3 + KOH —> KNO3 + H20
From the equation,
nA = 1
nB = 1
From the question given, we obtained the following:
Ma =?
Va = 30.00mL
Mb = 0.1000M
Vb = 43.13 mL
MaVa / MbVb = nA/nB
Ma x 30 / 0.1 x 43.13 = 1
Cross multiply to express in linear form
Ma x 30 = 0.1 x 43.13
Divide both side by 30
Ma = (0.1 x 43.13) /30 = 0.144M
The molarity of the nitric acid is 0.144M
Weathering and chemical substance weathering
Answer: C(s) + O2(g) --> CO2(g)12g (C) .... 50.8g (O2)................. initial amounts0g(C) .........18.8g(O2) ................. amounts when reaction completeThat means that C was the limiting reactant, and the amount of CO2 is based on the amount of carbon that burned. Covert 12 grams of carbon to moles. The moles of CO2 will be the same, since they are in a 1:1 mole ratio. Then convert the moles of CO2 to grams.12g C x (1 mol C / 12.0 g C) x (1 mol CO2 / 1 mol C) x (44.0g CO2 / 1 mol CO2) =44 g of CO2
Answer:
protons and neutrons- second choice
Answer:
The correct answer to the question is
The standard heat of reaction for the reaction is
a. 216.8 kJ released per mole
Explanation:
The heat of reaction is given by [Heat of formation of products] - [Heat of formation of reactants]
In the question we have, heat of formation of the products Zn+2 (aq) = -152.4 kJ/mole and the heat of formation of the reactants = 64.4 kJ/mole
Therefore, the heat of formation of the reaction = (-152-64.4) kJ/mole or
-216.8 kJ/mole released