Question:
1) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
2) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
3) The universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses.
4) The universe is warming which, according to the Big Bang Theory, is expected to happen as the cosmos accumulates.
Answer:
The correct option is;
3) The Universe is cooling which, according to the Big Bang Theory, is expected to happen as the cosmos disperses
Explanation:
With the temperature measurement carried out using the CSIRO radio telescope, Astronomers have been able to determine a temperature difference in the universe from 5.08 Kelvin 7.2 billion light years away to 2.73 Kelvin in the Universe today, which is in support of the Big Bang theory that as the Universe expanded from a state of extreme temperature that cools down as the Universe expands or the cosmos disperses.
Material that is not attracted to metal
Answer: 60
Explanation: if u hit it it will have impact and the impact added 10n
Answer: The original temperature was

Explanation:
Let's put the information in mathematical form:





If we consider the helium as an ideal gas, we can use the Ideal Gas Law:

were <em>R</em> is the gas constant. And <em>n</em> is the number of moles (which we don't know yet)
From this, taking
, we have:
⇒
Now:
⇒
Answer:
c. V = 2 m/s
Explanation:
Using the conservation of energy:

so:
Mgh = 
where M is the mass, g the gravity, h the altitude, I the moment of inertia of the pulley, W the angular velocity of the pulley and V the velocity of the mass.
Also we know that:
V = WR
Where R is the radius of the disk, so:
W = V/R
Also, the moment of inertia of the disk is equal to:
I = 
I = 
I = 10 kg*m^2
so, we can write the initial equation as:
Mgh = 
Replacing the data:
(5kg)(9.8)(0.3m) = 
solving for V:
(5kg)(9.8)(0.3m) = 
V = 2 m/s