Answer:
Llegara a su destino a la 1:00 pm
Explanation:
Si el coche va a 90 km/h buscamos un numero q al multiplicarlo por 90 nos de 450. Entonces 90×5 = 450, si hacemos la cuenta desde las ocho de la mañana mas las 5 horas del viaje terminaria llegando a su destino a la 1:00 pm.
Answer:
the heat absorbed by the block of copper is 74368.476J
Explanation:
Hello!
To solve this problem use the first law of thermodynamics that states that the heat applied to a system is the difference between the initial and final energy considering that the mass and the specific heat do not change so we can infer the following equation
Q=mCp(T2-T1)
Where
Q=heat
m=mass=2.3kg
Cp=0.092 kcal/(kg C)=384.93J/kgK
T2=Final temperatura= 90C
T1= initial temperature=6 C
solving

the heat absorbed by the block of copper is 74368.476J
The wise and careful use of energy is called CONSERVATION
Answer:
A. -2.16 * 10^(-5) N
B. 9 * 10^(-7) N
Explanation:
Parameters given:
Distance between their centres, r = 0.3 m
Charge in first sphere, Q1 = 12 * 10^(-9) C
Charge in second sphere, Q2 = -18 * 10^(-9) C
A. Electrostatic force exerted on one sphere by the other is:
F = (k * Q1 * Q2) / r²
F = (9 * 10^9 * 12 * 10^(-9) * -18 * 10^(-9)) / 0.3²
F = -2.16 * 10^(-5) N
B. When they are brought in contact by a wire and are then in equilibrium, it means they have the same final charge. That means if we add the charges of both spheres and divided by two, we'll have the final charge of each sphere:
Q1 + Q2 = 12 * 10^(-9) + (-18 * 10^(-9))
= - 6 * 10^(-9) C
Dividing by two, we have that each sphere has a charge of -3 * 10^(-9) C
Hence the electrostatic force between them is:
F = [9 * 10^9 * (-3 * 10^(-9)) * (-3 * 10^(-9)] / 0.3²
F = 9 * 10^(-7) N