From a balistics pendulum as an example, which is probably where you are at...
Triangles, L = 12m, x_0 = 1.6, we need to find the angle (theta)
sin (theta) = 1.6/12 = 0.1333....
theta = ArcSin(0.1333...) = 0.1337 rad
Then, this is the height that the mass vertically raises in it's arc
y_2 = L-L*cos(theta) = 0.107 m
use y_2 in a kinematic swing...
<span><span>v=sqrt(<span><span>2g<span>y_2)</span></span></span>=1.45m/s</span></span>
Answer:
Acceleration = 10.06 m/s²
Explanation:
1 mile = 1.6093km
1609.3m = 1 mile
1 m =
mile
50.0 miles/hour =
m/s
= 22.35m/s
from equation
S = Ut + 1/2 at²
v = U + at
22.35 = 0 + a * 2.22
a = 22.35 ÷ 2.22
= 10.06 m/s²
The frictional force while the mass is sliding will be 46.2 N.
<h3>What is friction force?</h3>
Opposition forces on the surface cause heat loss during the motion of an object known as the friction force.
Given data:
m(mass)= 10.0-kg
Θ (Inclination angle)=25.0o
Coefficient of sliding friction,
=0.520
Coefficient of static friction,
The friction force, F=?
Resolve the force in the inclined plane;

Hence, the frictional force while the mass is sliding will be 46.2 N.
To know more about friction force refer to the link;
brainly.com/question/1714663
#SPJ1
Answer:
The electric flux is 
Explanation:
Given:
- Radius of the disc R=0.50 m
- Angle made by disk with the horizontal

- Magnitude of the electric Field

The flux of the Electric Field E due to the are dA in space can be found out by using Gauss Law which is as follows

where
is the total Electric Flux- E is the Electric Field
- dA is the Area through which the electric flux is to be calculated.
Now according to question we have

Hence the electric flux is calculated.
Answer:
<h2>
m/s ^2</h2><h2 />
Explanation:
Solution,
When a certain object comes in motion from rest, in the case, initial velocity = 0 m/s
Initial velocity ( u ) = 0 m/s
Final velocity ( v ) = 72 km/h ( Given)
We have to convert 72 km /h in m/s


m/s
Final velocity ( v ) = 20 m/s
Time taken ( t ) = 2 seconds
Acceleration (a) = ?
Now,
we have,



m/s ^2
Hope this helps...
Good luck on your assignment..