2) generating power by using fossil fuels is harvesting a non-renewable resource. The more you harvest = the less you have
Answer:
3 H1 NMR signals
Explanation:
NB: kindly check the diagram of the chemical compound in the attached picture.
This particular Question is based on the part of chemistry which is known as spectroscopy. Spectroscopy is used in the Determination or in identifying chemical compounds. H'NMR works on the principle of nuclear magnetic resonance.
In order to solve this question, one has to count the number of hydrogen in unique location. The diagram in the attached show how hydrogen is been counted.
The numbers of signals is the number of different chemical environments in which hydrogen atoms are located.
NB: signals is also the same as peak in H'NMR.
Hence, the number of H1 NMR signals in this chemical compound is 3.
Answer:
56.9 mmoles of acetate are required in this buffer
Explanation:
To solve this, we can think in the Henderson Hasselbach equation:
pH = pKa + log ([CH₃COO⁻] / [CH₃COOH])
To make the buffer we know:
CH₃COOH + H₂O ⇄ CH₃COO⁻ + H₃O⁺ Ka
We know that Ka from acetic acid is: 1.8×10⁻⁵
pKa = - log Ka
pKa = 4.74
We replace data:
5.5 = 4.74 + log ([acetate] / 10 mmol)
5.5 - 4.74 = log ([acetate] / 10 mmol)
0.755 = log ([acetate] / 10 mmol)
10⁰'⁷⁵⁵ = ([acetate] / 10 mmol)
5.69 = ([acetate] / 10 mmol)
5.69 . 10 = [acetate] → 56.9 mmoles
Answer: (D) Are there solvents mixed in (or is it water based)?
Answer:
39.7 %
Explanation:
magnesium + oxygen ⟶ magnesium oxide
10.57 g 6.96 g 17.53 g
According to the <em>Law of Conservation of Mass</em>, the mass of the product must equal the total mass of the reactants.
Mass of MgO = 10.57 + 6.96
Mass of MgO = 17.53 g
The formula for mass percent is
% by mass = Mass of component/Total mass × 100 %
In this case,
% O = mass of O/mass of MgO × 100 %
Mass of O = 6.96 g
Mass of MgO = 17.53 g
% O = 6.96/17.53 × 100
% O = 0.3970 × 100
% O = 39.7 %