The correct answer is hydrogen<span>, and </span>oxygen<span>. </span>
Answer:
Option b. 0.048 M
Explanation:
We have the molecular weight and the mass, from sulcralfate.
Let's convert the mass in g, to moles
1 g . 1 mol / 2087 g = 4.79×10⁻⁴ moles.
Molarity is mol /L
Let's convert the volume of solution in L
10 mL . 1L/1000 mL = 0.01 L
4.79×10⁻⁴ mol / 0.01 L = 0.048 mol/L
The order of components in a typical flame atomic absorption spectrometer is hollow cathode lamp--flame--monochromator--detector
<u>Explanation:</u>
- The hollow cathode lamp practices a cathode created of the element of interest with a low internal pressure of inert gas.
- Remove scattered light of other wavelengths from the flame. AAS flame includes aiming at first the fuel than the oxidant and then lighting the flame with the instrument's auto-ignition system. Applying flame Ddtroy any analyte ions and breakdown complexes.
- The process of the monochromator is to divide analytical lines photons moving through the flame
- Photomultiplier tube (PMT) as the detector the PMT determines the intensity of photons of the analytical line exiting the monochromator.
When you add salt to water, you lower to freezing point of the substance.
So for example, normal water freezes at 0°C. But water with salt in it won't freeze at 0°C, because its freezing point is lowered.
In answer to the question. It takes longer for water with salt in it to freeze because the substance requires a lower temperature than normal water to freeze.