Answer:
The position of the ammeter is in series down the component. While the voltmeter must be connected in parallel. Its position is the gap through the component C.
The positions of one or the other are indicated in the image.
Explanation:
An ammeter is defined as a device used to measure current. Its unit is the ampere. While a voltmeter is used in the measurement of the potential difference between two points. Its unit is the volt. The ammeter must be connected in series with the point at which the current is to be measured, while the voltmeter must be connected in parallel.
Part (a):
We know that:
1 kw = 1000 watt ..........> Therefore, to convert watt into kw, we will divide by 1000
1 hour = 60 min ..........> Therefore, to convert mins into hours, we will divide by 60
Based on the above, the conversion results for the two units together would be as follows:
1 watt minute is equivalent to <span>0.000017 kilowatt hours
</span>Now, for the given , we will simply use cross multiplication to do the conversion as follows:
1 watt minute..............> 0.000017 kilowatt hours
750*15 ................> ??
750*15 watt min = 0.19125 kilowatt hour
Part (b):
From part a, we have that the consumption is 0.19125 kilowatt hour per day. Assuming that the year is 365 days, we would have:
yearly consumption = 0.19125 * 365 = 69.80625 kilowatt hour
The cost is 8 cents/kilowatt hour
Therefore:
yearly cost = 69.80625 * 8 = 558.45 cents
Hope this helps :)
The correct answer is
<span>
C) 1200 g/m3. Let's see why. The relationship between liters and cube decimeters is
</span>

Therefore,

However, we also know that

Therefore,

and

Therefore, the density of the problem

becomes
Cerebellum: controls balance and muscle coordination; located caudal to the cerebrum in the sheep brain. ... Gray matter: areas of the brain and spinal cord containing neuronal cell bodies, dendrites, and unmyelinated axons. Found in the cerebral cortex of the brain and inner area of the spinal cord
Hi there!

To calculate the tension, we must calculate the acceleration of the system.
Begin with a summation of forces:
∑F = -M₁gsinФ + T - T + M₂g
Simplify and solve for acceleration: (Tensions cancel out)

Plug in values. Let g = 10 m/s²

Now, to find tension, let's sum up the forces acting on ONE block. For simplicity, we can look at the hanging block:
∑F = -T + W
ma = -T + W
Rearrange to solve for T:
T = W - ma
We know the acceleration, so plug in the values:
T = (8)(10) - (8)(5.91) = 32.73 N