<u>Racemic </u><u>mixture</u>
An equimolar mixture of the enantiomers is called Racemic mixture. It may be represented as dl or (±)
The equations of reaction occurring in the tubes are as follows:
- 2 MnO₄⁻ + 6 Br⁻ + 8 H⁺ → 2 MnO₂ + 3 Br₂ + 4 H₂O
- 2 MnO₄⁻ + 6 I⁻ + 8 H⁺ → 2 MnO₂ + 3 I₂ + 4 H₂O
- No reaction
- 2 Fe³⁺ + 2 I⁻ → 2 Fe²⁺ + I₂
<h3>What are the reactions occurring in the tubes?</h3>
The reactions occurring in the tubes are redox reactions.
Based on the table the equations of reaction are as follows:
- 2 MnO₄⁻ + 6 Br⁻ + 8 H⁺ → 2 MnO₂ + 3 Br₂ + 4 H₂O
- 2 MnO₄⁻ + 6 I⁻ + 8 H⁺ → 2 MnO₂ + 3 I₂ + 4 H₂O
- No reaction
- 2 Fe³⁺ + 2 I⁻ → 2 Fe²⁺ + I₂
In conclusion, redox reaction are reactions in which electrons are transferred.
Learn more about redox reactions at: brainly.com/question/26750732
#SPJ1
The theoretical yield of H₂S is 13.5 g.
The percent yield is 75.5 %.
<h3>What is the theoretical yield of H₂S from the reaction?</h3>
The equation of the reaction is given below:
Moles of FeS reacting = mass/molar mass
Molar mass of FeS = 88 g/mol
Moles of FeS reacting = 35/88 = 0.398 moles
Moles of H₂S produced = 0.398 moles
Molar mass of H₂S = 34 g/mol
Mass of H₂S produced = 0.398 * 34 = 13.5 g
Theoretical yield of H₂S is 13.5 g.
- Percent yield = actual yield/theoretical yield * 100%
Actual yield of H₂S = 10.2 g
Percent yield = 10.2/13.5 * 100%
Percent yield = 75.5 %
In conclusion, the actual yield is less than the theoretical yield.
Learn more about percent yield at: brainly.com/question/8638404
#SPJ1
Answer:
The high system pressure and relatively large chlorine molecule size.
Explanation:
Having the expression of the ideal gas, and clearing the pressure, we have:
P = nRT/V
Meanwhile, for a non-ideal gas we have the following equation:
P = (nRT / V-nb) - n2a/V2
In this equation, high pressures and low temperatures have an influence on nonideal gases.
Therefore, at high pressures, the molecules in a gas are closer together and have high intermolecular forces. On the other hand, at low temperatures, the kinetic energy of a gas is reduced, so that the intermolecular attractive forces are also reduced.