Answer:
option B.
Explanation:
The correct answer is option B.
when the ball drops, the velocity of the ball before the collision is v
After the collision, the velocity of the ball is the same but in the opposite direction.
Impulse delivered to the ball and the floor, in this case, is not zero.
The magnitude of the momentum remains the same but the direction of the ball changes.
On that list of choices, 'C' is the only "example" of a plane.
None of the choices "describes" a plane.
A. Using the third equation of motion:
v2 = u2 + 2as
from the question;
the jet was initially at rest
hence u = 0
a = 1.75m/s2
s = 1500m
v2 = 02 + 2(1.75)(1500)
v2 = 5250
v = √5250
v = 72.46m/s
hence it moves with a velocity of 72.46m/s.
b. s = ut + 1/2at2
1500 = 0(t) + 1/2(1.75)t2
1500 × 2 = 2× 1/2(1.75)t2
3000 = 1.75t2
1714.29 = t2
41.4 = t
hence the time taken for the plane to down the runway is 41.4s.
Read more on Brainly.com -
brainly.com/question/18743384#readmore
1. C. Gravitational attraction exists between the two objects.
Explanation:
Gravitational attraction is always exerted between two objects which have mass, and its magnitude is given by:

where G is the gravitational constant, m1 and m2 the masses of the two objects, and r the separation between them. Since the two objects have for sure non-zero masses m1 and m2, even if they are 20 miles apart, the value of the gravitational attraction F is non-zero, so the correct answer is C.
2. D. Two atoms come together to form a molecule.
Explanation:
this outcome is actually caused by the electrostatic forces between the two atoms, not by gravitational force. In fact, gravitational force becomes relevant only when the masses of the two objects involved are large enough: this is the case for planets, stars, galaxies, and objects in the universe. However, two atoms have very small masses, so the gravitational force between them is really negligible. On this smaller scales, the electrostatic force is much stronger than the gravitational force, so the electrostatic force is the real responsible for the formation of bonds between atoms.