Answer:
heueiehhe8ehh38ehgeyegdhowgw8ehieerr
Answer:5.7m/s
Explanation:
Mass=1kg
Initial velocity=u=8m/s
height=h=1.6m
Final velocity =v
Acceleration due to gravity=g=9.8m/s^2
v^2=u^2-2xgxh
v^2=8^2-2x9.8x1.6
v^2=8x8-2x9.8x1.6
v^2=64-31.36
v^2=32.64
Take the square root of both sides
√(v^2)=√(32.64)
v=5.7
Speed at the height of 1.6m is 5.7m/s
Spring Tides are formed by the constructive interference of bulges created by the moon and sun. Spring Tides occur when the Sun, Moon and the Earth are aligned. Neap Tides are formed by the destructive interference created by the moon and sun. Neap tides occur when the Sun, Moon, and Earth align to make a right angle.
Answer:
b.) Length
Explanation:
The length of the string can be changed by removing it from the slotted bracket and placing it back in. You can change the mass by varying the number of washers on the mass hanger. The amplitude can be changed by varying the starting angle of the pendulum (low, medium, and high angle). sorry if wrong
Answer:
v = 7.67 m/s for L= 1m
Explanation:
Let's use the conservation of mechanical energy, at the highest point and the lowest point
Initial. Vertical ruler
Em₀ = mg h
Final. Just before touching the floor
= K = ½ I w²
Em₀ = 
m g h = ½ I w²
The moment of inertia of a ruler that turns on one end is
I = 1/3 m L²
Let's replace
m g h = ½ (1/3 m L²) w²2
g h = 1/6 L² w²
They ask for the speed of the end so the height h is equal to the length of the ruler
g L = 1/6 L² w²
The linear and angular variables are related
v = w r
w = v / r
In this case the point of interest a in strangers r = L
g L = 1/6 L² v² / L²
v = √ 6 g L
Let's calculate
Assume that the length of the meter is L = 1 m
v = √ (6 9.8 1)
v = 7.67 m/s