Answer:
Distance is directly proportional to the velocity
Explanation:
In 1929, Edwin Hubble's wrote an article that talked about relationship between the distance and recession speed/velocity of galaxies which led to what is known as the Hubble Law. This law states that galaxies are moving away from the earth at velocities proportional to their distances.
Thus is written as;
v = H_o•d
Where;
v is velocity
d is distance
H_o is Hubble's constant rate of cosmic expansion.
He came to this conclusion by generating a graph known as Hubble's classic graph which was a graph of observed velocity vs distance for nearby galaxies.
Answer:
Explanation:
Diameter of pool = 12 m
radius of pool, r = 6 m
Total height raised, h = 3 + 2.5 = 5.5 m
density of water, d = 1000 kg/m³
Mass of water, m = Volume of water x density
m = πr²h x d
m = 3.14 x 6 x 6 x 5.5 x 1000
m = 113040 kg
Work = m x g x h
W = 113040 x 9.8 x 5.5
W = 6092856 J
Answer:
Time = 80.91 seconds
Explanation:
Given the following data;
Velocity = 5.50 m/s.
Distance = 445 meters
To find the time;
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Substituting into the formula, we have;
5.5 = 445/time
Time = 445/5.5
Time = 80.91 seconds
This is the upthrust on an object which is placed inside a fluid
This force act upwards and always push upwards
so the correct answer is given as
D. A force within a fluid that pushes upward
this force is always due to pressure difference at two levels of
at lower level since pressure is more that is why the force is upwards and this upthrust is known as Buoyancy