40 g NaOH. You must use 40 g NaOH to prepare 10.0 L of a solution that has a pH of 13.
<em>Step 1</em>. Calculate the pOH of the solution
pOH = 14.00 – pH = 14.00 -13 = 1
<em>Step 2</em>. Calculate the concentration of NaOH
[NaOH] = [OH^(-)] = 10^(-pOH) mol/L = 10^(-1) mol/L = 0.1 mol/L
<em>Step 3</em>. Calculate the moles of NaOH
Moles of NaOH = 10.0 L solution × (0.1 mol NaOH/1 L solution) = 1 mol NaOH
<em>Step 4</em>. Calculate the mass of NaOH
Mass of NaOH = 1 mol NaOH × (40.00 g NaOH/1 mol NaOH) = 40 g NaOH
Transferring or sharing electrons between atoms forms a covalent bond.<span> Covalent
bonding is when atoms share electrons. It is a chemical bond that involves the
sharing of electron pairs. These pairs are called bonding pairs. Examples of
compounds that has covalent bonds are CO2, organic compounds, lipids and
proteins.</span>
Answer:
2Na + Br2 = 2NaBr
Explanation:
In order to balance a chemical equation you make the make sure both sides have the same number of atoms on each side, you do this by multiplying on both sides as if it was a algebraic equation.
Na+ Br2 = NaBr
Na × 2 = Na2
Na × 2 = Na2
Br × 2 = Br2
2Na + Br2 = 2NaBr
Hope this helps.
The electron geometry of a water molecule is tetrahedral even though the molecular geometry is bent.
As water molecule hybridisation is sp³ that provides it a electron geometry tetrahedral but due to presence of 2 lone pairs and 2 bond pairs its molecular geometry is bent.
The hybridisation sp³ makes electron geometry of a water molecule tetrahedral but the presence of 2 lone pairs makes its molecular geometry bent
Answer:1.
Explanation: This reaction is catalyzes by pyruvate dehydrogenase. Pyruvate being the end product of glycolysis has many fates after glycolysis,one of which is to enter the TCA(Tricarboxylic acid cycle) cycle. It is first converted to actetate by the action of pyruvate dehydrogenase. This enzyme converts pyruvate to acetate releasing CO2 and NADH because this oxidative decarboxylation of pyruvate is coupled with reduction of NAD+ which can feed into the electron transport chain.