how does the electric force between two charged particles change if the distance between them is increased by a factor of 3?
a. it is reduced by a factor of 3
Answer:
w = 5832.372 Joules
Explanation:
Mass of water, m = 20 kg
The water was pulled up to a height of 35 meters, i.e. h = 35 m
It takes 14 minutes to pull up the water through the height, 35 m
speed = distance/ time = 35/14 = 2.5 m/min
The bucket's height, y = speed * time = 2.5t meters
6 kg of water drips out of the bucket throughout the 14 minutes
The rate at which the water drips drips out = (6/14) = 0.4286 kg/min
Mass of water that drips out in time, t = 0.4286t kg
The mass of water remaining = (20 - 0.4286t) kg
Change in Workdone, Δw = mgΔy
Δy = 2.5 Δt
Δw = mg * 2.5 Δt
dw = (20 - 0.4286t)g2.5 dt
integrating both sides
dw = (50g - 1.07gt)dt
where b = 0, a = 14
w = 50gt - 1.07g(t²)/2 g = 9.8 m/s²
w = 490t - 5.243t²
w = (490*14 - 5.243*14²) - (490*0 - 5.243*0²)
w = 6860 - 1027.628
w = 5832.372 Joules
Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

For the answer to the question above
Forecasting how a business might do in the future.
Calculating tax.
Doing basic payrolls.
Calculating Revenues.
Producing charts.
--Going past 5--
Inventory tracking
Very (VERY) basic CRM for small businesses
I hope my answer helped you.
Answer:
Force, 
Explanation:
Given that,
Mass of the bullet, m = 4.79 g = 0.00479 kg
Initial speed of the bullet, u = 642.3 m/s
Distance, d = 4.35 cm = 0.0435 m
To find,
The magnitude of force required to stop the bullet.
Solution,
The work energy theorem states that the work done is equal to the change in its kinetic energy. Its expression is given by :

Finally, it stops, v = 0



F = -22713.92 N

So, the magnitude of the force that stops the bullet is 