1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rudiy27
3 years ago
10

A 200-kg object and a 500-kg object are separated by 4.00 m. (a) find the net gravitational force exerted by these objects on a

50.0-kg object placed midway between them. (b) at what position (other than an infinitely remote one) can the 50.0-kg object be placed so as to experience a net force of zero from the other two objects?

Physics
1 answer:
pantera1 [17]3 years ago
5 0
Check the attached file for the solution for this problem.

You might be interested in
Which of the following observations indicates that an object is falling at terminal velocity?
vitfil [10]

Answer:  D

Explanation:

When an object falls gravity is pulling down on it and is picking up speed, but as it gains speed air resistance becomes a faster. Air resistance increases with speed. And that force keeps it from accelerating eventually the object will pick up speed such that the force due to air resistance will keep it from getting any more speed at that point force due to air resistance is equal to its weight (mg) and the net force is equal to zero so it won’t accelerate any more at that point it is said to be moving in terminal velocity.

When an object has reached terminal velocity, it will have a constant velocity

5 0
3 years ago
A 12.0-g bullet is fired horizontally into a 112-g wooden block that is initially at rest on a frictionless horizontal surface a
sergiy2304 [10]
The speed would be in a decimal? Or do you want it in a fraction?
7 0
2 years ago
How fast, in rpm, would a 5.6 kg, 25-cm-diameter bowling ball have to spin to have an angular momentum of 0.26 kgm2/s
solong [7]

Answer:

71 rpm

Explanation:

Given that:

Angular momentum (L) = 0.26

Diameter = 25cm = 0.25 cm

Radius, r = (d/2) = 0.125m

Mass = 5.6 kg

Moment of inertia (I) = 2mr² / 5

I = (2 * 5.6 * 0.125^2) / 5

= 0.175

= 0.175 / 5

= 0.035 kgm²

Angular speed (w) ;

w = L / I

w = 0.26 / 0.035

= 7.4285714

= 7.429 rad/s

w = (7.429 * 60/2π)

w = 445.74 / 2π rpm

w = 70.941724

Angular speed = 70.94 rpm

= 71 rpm

5 0
3 years ago
An object travels with a constant speed in a circular path. The net force on the object is
Pepsi [2]

Answer:

toward the center

Explanation:

Before answering, let's remind the first two Newton Laws:

1) An object at rest tends to stay at rest and an object moving at constant velocity tends to continue its motion at constant velocity, unless acted upon a net force

2) An object acted upon a net force F experiences an acceleration a according to the equation

F=ma

where m is the mass of the object.

In this problem, we have an object travelling at constant speed in a circular path. The fact that the trajectory of the object is circular means that the direction of motion of the object is constantly changing: this means that its velocity is changing, so it has an acceleration. And therefore, a net force is acting on it. The force that keeps the object travelling in the circular path is called centripetal force, and it is directed towards the center of the circle (because it prevents the object from continuing its motion straight away).

So, the correct answer is

toward the center

8 0
3 years ago
The smallest unit of charge is − 1.6 × 10 − 19 C, which is the charge in coulombs of a single electron. Robert Millikan was able
vovangra [49]

Answer:

-8.0 \times 10 ^{-19 }\ C,\ -3.2 \times 10 ^{-19 }\ C, -4.8 \times 10 ^{-19 }\ C

Explanation:

<u>Charge of an Electron</u>

Since Robert Millikan determined the charge of a single electron is

q_e=-1.6\cdot 10^{-19}\ C

Every possible charged particle must have a charge that is an exact multiple of that elemental charge. For example, if a particle has 5 electrons in excess, thus its charge is 5\times -1.6\cdot 10^{-19}\ C=-8 \cdot 10^{-19}\ C

Let's test the possible charges listed in the question:

-8.0 \times 10 ^{-19 }. We have just found it's a possible charge of a particle

-3.2 \times 10 ^{-19 }. Since 3.2 is an exact multiple of 1.6, this is also a possible charge of the oil droplets

-1.2 \times 10 ^{-19 } this is not a possible charge for an oil droplet since it's smaller than the charge of the electron, the smallest unit of charge

-5.6 \times 10 ^{-19 },\ -9.4 \times 10 ^{-19 } cannot be a possible charge for an oil droplet because they are not exact multiples of 1.6

Finally, the charge -4.8 \times 10 ^{-19 }\ C is four times the charge of the electron, so it is a possible value for the charge of an oil droplet

Summarizing, the following are the possible values for the charge of an oil droplet:

-8.0 \times 10 ^{-19 }\ C,\ -3.2 \times 10 ^{-19 }\ C, -4.8 \times 10 ^{-19 }\ C

5 0
3 years ago
Other questions:
  • What is the “lag of seasons”?
    5·1 answer
  • Mechanics: design a decision tree to determine if an object is experiencing an unbalanced force, and using newton's laws of moti
    10·1 answer
  • The cryosphere is composed of?
    7·1 answer
  • When we say the sun is rising and the sun is setting, who is the observer? where should the observer be to see that the sun does
    13·1 answer
  • 1. A wall is made up of four elements, as follows:
    9·1 answer
  • Which type of wave affects the surface of the land by causing it to rise and fall like waves on an ocean?
    10·1 answer
  • Plss help me asap
    13·1 answer
  • The tropic of cancer is to the tropic of capricorn as the arctic circle is to the
    14·1 answer
  • How long would a 2950 N force need to act to cause a 6000 kg delivery truck to accelerate from 4.0m/s to 29.0m/s?​
    6·1 answer
  • Please help
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!