Answer:
the tension of the rope is 34.95 N
Explanation:
Given;
length of the rope, L = 3 m
mass of the rope, m = 0.105 kg
frequency of the wave, f = 40 Hz
wavelength of the wave, λ = 0.79 m
Let the tension of the rope = T
The speed of the wave is given as;

Therefore, the tension of the rope is 34.95 N
Answer:
Explanation:
En la zona apótica (profundidad inferior a 200 m); todo lo que queda de la luz solar es una luz tenue, opaca, azul-verde, demasiado impotente para siquiera considerar permitir que ocurra la fotosíntesis. Sin embargo, hay comida para tener; basura, trozos de plantas podridas y derroche de criaturas caen desde arriba para cuidar a los seres vivos en la zona apótica.
Las formas de vida a una profundidad inferior a 200 m dependen de los productos químicos que salen de los respiraderos; el procedimiento que utilizan para hacer los alimentos se llama quimiosíntesis en lugar de fotosíntesis.
Answer:
The answer to your question is:
Explanation:
There are two kinds of cell transport passive transportation and active transportation.
Passive transportation does not need energy because molecules move from higher concentration to lower concentration.
Active transportation needs energy because molecules moves against concentration.
a. facilitated diffusion It's an example of passive transportation so this answer is wrong.
b. passive transport Molecules move in favor of concentration so this answer is wrong.
c. osmosis is another example of passive transport so this answer is wrong.
d. simple diffusion it's another example of passive transport, so it's wrong this answer.
e. active transport this is the right answer.
Answer:
Mass of the aluminium chunk = 278.51 g
Explanation:
For an isolated system as given the energy lost and gains in the system will be zero therefore sum of all transfer of energy will be zero,as the temperature will also remain same
A specific heat formula is given as
Energy Change = Mass of liquid x Specific Heat Capacity x Change in temperature
Q = m×c×ΔT
Heat gain by aluminium + heat lost by copper = 0 (1)
For Aluminium:
Q = 
Q = m x 17.94 joule
For Copper:

Q= 4996.53 Joule
from eq 1
m x 17.94 = 4996.53

Mass of the aluminium chunk = 278.51 g
Let's break the question into two parts:
1) The force needed in Ramp scenario.
2) The effort force needed in the lever scenario.
1. Ramp Scenario: In an incline, the only component of cart's weight(
mg) that is in the direction of motion is
. Therefore the effort force in this case must be equal or greater than
.
Now we need to find

.

is the angle between the incline of the ramp and the ground.
Since the height is
5m and the length of the ramp is
8m, 
would be
5/8 or 0.625. Now that you have

, mutiple it with
mg.
=> m*g*

= 20 * 10 * 5 / 8. (Taking g = 10 m/s² for simplicity) = 125N
Therefore, the minimum Effort force you would require in this case is
125N.
2. Lever Scenario:
Just apply "moment action" in this case, which is:


= ?

= mg = 20 * 10 = 200N

= 10m

= 1m
Plug-in the values in the above equation:

= 200/10=
20NAs 20N << 125N, the best choice is to use lever.