Answer:B
Explanation:Grote reber was the first scientist to map the milky way galaxy using radio waves.
Answer:
The length of chain she is allowed is 1.169 ft
Explanation:
The given parameters are;
The linear density of the chain = 0.83 lb/ft
The weight limit of the chain she wants = 1.4 lb
The formula for linear density = Weight/length
Therefore, in order to keep the chain below 1.4 lb, we have;
Linear density = Weight/length
Therefore;
The maximum length she wants = Weight/(Linear density)
Which gives;
The maximum length she wants = 1.4 lb/(0.83 lb/ft) =1.169 ft
Therefore;
The length of chain she is allowed = 1.169 ft.
Answer:
Radians
Explanation:
The angular speed is a measure of the rotation speed of a body. It is defined as the angle rotated by a unit of time. Thus, It refers to the angular displacement per unit time and is designated by the Greek letter
. Its unit in the International System is radian per second (rad / s).
probabilityAnswer:
2/27
Explanation:
The elk can not be eaten so we remove that from the probablity
so we have x/18
songbird = 4/18
mice = 6/18
4/18*6/18 = 2/27
Answer:
Explanation:
I got everything but i. Don't know why but it's eluding me. So let's do everything but that.
a. PE = mgh so
PE = (2.5)(98)(14) and
PE = 340 J
b.
so
and
KE = 250 J
c. TE = KE + PE so
TE = 340 + 250 and
TE = 590 J
d. PE at 8.7 m:
PE = (2.5)(9.8)(8.7) and
PE = 210 J
e. The KE at the same height:
TE = KE + PE and
590 = KE + 210 so
KE = 380 J
f. The velocity at that height:
and
so
v = 17 m/s
g. The velocity at a height of 11.6 m (these get a bit more involed as we move forward!). First we need to find the PE at that height and then use it in the TE equation to solve for KE, then use the value for KE in the KE equation to solve for velocity:
590 = KE + PE and
PE = (2.5)(9.8)(11.6) so
PE = 280 then
590 = KE + 280 so
KE = 310 then
and
so
v = 16 m/s
h. This one is a one-dimensional problem not using the TE. This one uses parabolic motion equations. We know that the initial velocity of this object was 0 since it started from the launcher. That allows us to find the time at which the object was at a velocity of 26 m/s. Let's do that first:
and
26 = 0 + 9.8t and
26 = 9.8t so the time at 26 m/s is
t = 2.7 seconds. Now we use that in the equation for displacement:
Δx =
and filling in the time the object was at 26 m/s:
Δx = 0t +
so
Δx = 36 m
i. ??? In order to find the velocity at which the object hits the ground we would need to know the initial height so we could find the time it takes to hit the ground, and then from there, sub all that in to find final velocity. In my estimations, we have 2 unknowns and I can't seem to see my way around that connundrum.