1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
3 years ago
14

As a civil engineer for your city, you have been assigned to evaluate the purchase of spring-loaded guard rails to prevent cars

from leaving the road. In response to a request for proposals*, one company states their guard rails are perfect for the job. Each section of their guard rails consists of two springs, each having a force constant 3.13400 105 N/m with a maximimum distance of compression of 0.614 m. (According to the manufacturer, beyond this compression the spring loses most of its ability to absorb an impact elastically.) The largest vehicle the guardrails are expected to stop are trucks of mass 4550.000 kg. What is the maximum speed at which these guard rails alone can be expected to bring such vehicles to a halt within the stated maximum compression distance? (Assume the vehicles can strike the guard rail head on and that the springs are perfectly elastic.)
____ m/s
Given your result which section of road often features such a speed
School Zone
Large Road
Highway
Guard rails are pointless if the acceleration they create seriously injures passengers. One important safety factor is the acceleration experienced by passengers during a collision. Calculate the maximum acceleration of the vehicle during the time in which it is in contact with the guard rail.
_____ m/s^2
If the highway department considers 20 g\'s the maximum safe acceleration, is this guard rail safe in regards to acceleration?
Physics
1 answer:
Alex_Xolod [135]3 years ago
5 0

Answer:

a) v = 7,207 m / s

, b) a = 42.3 m / s²

Explanation:

We will solve this exercise using the concept of mechanical energy, We will write it in two points before the car touches the springs and in point of maximum compression

Initial

    Em₀ = K = ½ m v²

Final  

    Em_{f} = 2 Ke = ½ k x²

The two is placed because each barred has two springs and each does not exert the same force

    Emo = Em_{f}

     ½ m v² = 2 ½ k x²

     v = √(2k/m) x

     v = √ (2 3,134 10⁵/4550) 0.614

     v = 7,207 m / s

Let's take this speed to km / h

     v = 5,096 m / s (1km / 1000m) (3600s / 1h)

     v = 25.9 km / h

This speed is common in school zones

Let's use kinematics to calculate the average acceleration

      vf² = v₀² - 2 a x

       0 = v₀² - 2 a x

       a = v₀² / 2 x

       a = 7,207²/2 0.614

       a = 42.3 m / s²

We buy this acceleration with the acceleration of gravity

       a / g = 42.3 / 9.8

       a / g = 4.3

This acceleration is well below the maximum allowed

You might be interested in
A ball is kicked from a height of 20 meters above the ground. If the initial velocity is 10 m/s, how long is the ball in flight
nasty-shy [4]
S=20 m
v=10 m/s
t=s/v
= 20/10
= 2 s.
8 0
3 years ago
Baseball player A bunts the ball by hitting it in such a way that it acquires an initial velocity of 1.3 m/s parallel to the gro
pashok25 [27]

Answer:

Explanation:

cSep 20, 2010

well, since player b is obviously inadequate at athletics, it shows that player b is a woman, and because of this, she would not be able to hit the ball. The magnitude of the initial velocity would therefore be zero.

Anonymous

Sep 20, 2010

First you need to solve for time by using

d=(1/2)(a)(t^2)+(vi)t

1m=(1/2)(9.8)t^2 vertical initial velocity is 0m/s

t=.45 sec

Then you find the horizontal distance traveled by using

v=d/t

1.3m/s=d/.54sec

d=.585m

Then you need to find the time of player B by using

d=(1/2)(a)(t^2)+(vi)t

1.8m=(1/2)(9.8)(t^2) vertical initial velocity is 0

t=.61 sec

Finally to find player Bs initial horizontal velocity you use the horizontal equation

v=d/t

v=.585m/.61 sec

so v=.959m/s

5 0
3 years ago
Read 2 more answers
Please list the following for the Element, HYDROGEN
bagirrra123 [75]

Answer:

1 Proton, 1 Electron, No Neutrons

Group 1, Period 1

Gases

3 0
3 years ago
What does the triad color scheme include?
Ainat [17]
I think it's C, three hues that are adjacent on the color wheel
3 0
3 years ago
Identify the forces acting on the cars and explain why the cars do not slide down the hill
Dvinal [7]
<span>Examples of outside forces acting on a car is gravity, wind, and other cars. Cars do not slide down hills because their weight, combined with the friction of their tires against the road, hold them in place. </span>
5 0
4 years ago
Other questions:
  • A girl is whirling a ball on a string around her head in
    6·1 answer
  • A 1200 kg car is moving at 5.0 m/s east. it strikes an 1800 kg car at rest. the cars have an elastic collision and move in the e
    10·1 answer
  • 1. Select all that apply.
    8·2 answers
  • Ch 31 HW Problem 31.63 10 of 15 Constants In an L-R-C series circuit, the source has a voltage amplitude of 116 V , R = 77.0 Ω ,
    13·1 answer
  • A 0.75 kilogram apple is thrown upward from the ground. The apple reaches a height of 5.5m, what is the beginning gravitational
    15·1 answer
  • All of the following are kinds of forces except thrust acceleration gravity friction
    6·1 answer
  • 1. What type of interference is happening when intersecting light waves subtract from each other to create dark spots? Which let
    12·1 answer
  • I need the answer please
    7·1 answer
  • A skateboarder is traveling at a velocity of 8 m/s. She slows down and comes to a stop in 4 seconds. Calculate the skater’s acce
    14·1 answer
  • Given a circuit consisting of a DC battery of voltage 200 volts connected to a single resistor. If the electric current through
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!