Answer:
n = 11.45 mol
Explanation:
Given data:
Number of moles = ?
Volume of gas = 98 L
Pressure = 2.8 atm
temperature = 292 K
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
2.8 atm × 98 L = n × 0.0821 atm.L/ mol.K × 292 K
274.4 atm.L = n × 23.97atm.L/ mol
n = 274.4 atm.L /23.97atm.L/ mol
n = 11.45 mol
Answer:
6750 J
Explanation:
The specific heat capacity of iron is 450 J/kg/K
Quantity of heat = mcθ; where m is the mass and c is the specific heat capacity and θ is the temperature change.
Therefore;
m = 3 kg, c = 450 J/kg/K and θ = 5°C
Quantity of heat = 3 × 450 × 5
<u>= 6150 Joules</u>
Hello!
To do this, use the molar mass. This is how much a mole of an atom weighs. A mole is 6.02214076×10²³ atoms.
Molar masses of:
Se: 78.96 g/mol
Cu: 63.546 g/mol
Ba: 137.327 g/mol
Now, the element with the highest molar mass will have the fewest atoms. This is because the element weighs more, so therefore for the same amount of mass, there will be less of the element needed to reach that mass.
Therefore, 10g of Ba would have the fewest number of atoms.
Hope this helps!