1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sedaia [141]
3 years ago
15

An astronomer wants to visualize the relative distances between planets in our solar system. A biologist wants to examine the br

anching of blood vessels within the body. A chemist wants to see the angles between bonds in a molecule. A geologist wants to view the layers of the Earth from core to crust.
What is the best method that all of these different scientists could use to perform their investigations?

A. perform a field study
B. create a controlled laboratory experiment
C. build a model
D. all of these
Physics
2 answers:
Svetradugi [14.3K]3 years ago
6 0

Answer:

B it builds a model

Explanation:

its on study island

ArbitrLikvidat [17]3 years ago
6 0

Answer: C. build a model

Explanation:

Build a model is the correct method so as to perform the investigation as the model can be used to simulate the astronomical, biological, chemical and geological natural processes occurring in nature. The model can give an idea about the cause of a natural phenomena. It can be used to mention the distance between the two separate bodies, morphological features of body of living organisms, the angles between the bonds of the molecules, it can also be used to describe the layers of the earth from core to crust.

You might be interested in
Look around the room you are in. Name
kozerog [31]

Answer:

A wire,rubber

Explanation:

yes

3 0
3 years ago
Read 2 more answers
Where does denitrification happen?
Alchen [17]
The correct anwser is in deep soil or anoxic aquatic sediment.
6 0
3 years ago
Time measurements from a stopwatch are not precise. Why not ?
fgiga [73]
Human error (average human reaction time is .2 seconds)
5 0
3 years ago
Three identical resistors are connected in parallel. The equivalent resistance increases by 630 when one resistor is removed and
strojnjashka [21]

Answer:

each resistor is 540 Ω

Explanation:

Let's assign the letter R to the resistance of the three resistors involved in this problem. So, to start with, the three resistors are placed in parallel, which results in an equivalent resistance R_e defined by the formula:

\frac{1}{R_e}=\frac{1}{R} } +\frac{1}{R} } +\frac{1}{R} \\\frac{1}{R_e}=\frac{3}{R} \\R_e=\frac{R}{3}

Therefore, R/3 is the equivalent resistance of the initial circuit.

In the second circuit, two of the resistors are in parallel, so they are equivalent to:

\frac{1}{R'_e}=\frac{1}{R} +\frac{1}{R}\\\frac{1}{R'_e}=\frac{2}{R} \\R'_e=\frac{R}{2} \\

and when this is combined with the third resistor in series, the equivalent resistance (R''_e) of this new circuit becomes the addition of the above calculated resistance plus the resistor R (because these are connected in series):

R''_e=R'_e+R\\R''_e=\frac{R}{2} +R\\R''_e=\frac{3R}{2}

The problem states that the difference between the equivalent resistances in both circuits is given by:

R''_e=R_e+630 \,\Omega

so, we can replace our found values for the equivalent resistors (which are both in terms of R) and solve for R in this last equation:

\frac{3R}{2} =\frac{R}{3} +630\,\Omega\\\frac{3R}{2} -\frac{R}{3} = 630\,\Omega\\\frac{7R}{6} = 630\,\Omega\\\\R=\frac{6}{7} *630\,\Omega\\R=540\,\Omega

8 0
3 years ago
A modern compact fluorescent lamp contains 1.4 mg of mercury (Hg). If each mercury atom in the lamp were to emit a single photon
Reika [66]

Answer:

A. 1.64 J

Explanation:

First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:

n=\frac{m}{M_m}

where

n is the number of moles

m = 1.4 mg = 0.0014 g is the mass of mercury

Mm = 200.6 g/mol is the molar mass of mercury

Substituting, we find

n=\frac{0.0014 g}{200.6 g/mol}=7.0\cdot 10^{-6} mol

Now we have to find the number of atoms contained in this sample of mercury, which is given by:

N=n N_A

where

n is the number of moles

N_A=6.022\cdot 10^{23} mol^{-1} is the Avogadro number

Substituting,

N=(7.0\cdot 10^{-6} mol)(6.022\cdot 10^{23} mol^{-1})=4.22\cdot 10^{18} atoms

The energy emitted by each atom (the energy of one photon) is

E_1 = \frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda=508 nm=5.08\cdot 10^{-7}nm is the wavelength

Substituting,

E_1 = \frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{5.08\cdot 10^{-7} m}=3.92\cdot 10^{-19} J

And so, the total energy emitted by the sample is

E=nE_1 = (4.22\cdot 10^{18} )(3.92\cdot 10^{-19}J)=1.64 J

4 0
3 years ago
Other questions:
  • Find the length l of one "arch" of this cycloid, that is, find the distance traveled by a small stone stuck in the tread of a ti
    5·2 answers
  • What is flens, the focal length of the lens? if the lens is converging flens is positive. it the lens is diverging, flens is neg
    15·1 answer
  • Why there is no inductive reactance in dc circuits
    8·1 answer
  • A 79 kg person sits on a 3.7 kg chair. Each leg of the chair makes contact with the floor in a circle that is 1.3 cm in diameter
    8·1 answer
  • Light travels approximately 982,080,000 ft/s, and one year has approximately 32,000,000 seconds. A light year is the distance li
    8·1 answer
  • PLZ HELP I DONT GET IT
    5·1 answer
  • HELP QUICK: A pilot performs a vertical maneuver around a circle with a radius R. When the
    12·1 answer
  • To test the strength of a retainment wall designed to protect a nuclear reactor,
    14·1 answer
  • Explain melting and freezing using the kinetic theory of matter​
    8·2 answers
  • Giventhe electrkfield E= W,+ xoy+2az (V/m), find
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!