To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
Answer:
a.After
second Mr Comer's speed

b.Distance travelled by Mr.Comer in
seconds

Explanation:
a. Lets recall our first equation of motion 
Now we know that
,
and

Plugging the values we have.




Then Mr.Comer's speed after
sec

b.
Lets find the distance and recall our third equation of motion.

So
distance covered.
Dividing both sides with 2a we have.

Plugging the values.


So Mr.Comer will travel a distance of
.
Answer:
Distance, d = 0.1 m
It is given that,
Initial velocity of meson,
Finally, the meson is coming to rest v = 0
Acceleration of the meson, (opposite to initial velocity)
Using third equation of motion as :
s is the distance the meson travelled before coming to rest.
So,
s = 0.1 m
The meson will cover the distance of 0.1 m before coming to rest. Hence, this is the required solution.
Answer:
The minimum speed = 
Explanation:
The minimum speed that the rocket must have for it to escape into space is called its escape velocity. If the speed is not attained, the gravitational pull of the planet would pull down the rocket back to its surface. Thus the launch would not be successful.
The minimum speed can be determined by;
Escape velocity = 
where: G is the universal gravitational constant, M is the mass of the planet X, and R is its radius.
If the appropriate values of the variables are substituted into the expression, the value of the minimum speed required can be determined.
<span>Ocean currents act much like a conveyer belt,
transporting warm water and precipitation from the equator toward the
poles and cold water from the poles back to the tropics. Thus, currents
regulate global climate, helping to counteract the uneven distribution of solar radiation reaching Earth's surface.</span>