The amount of heat needed to raise the temperature of a substance by

is given by

where
m is the mass of the substance
Cs is its specific heat capacity

is the increase in temperature
For oxygen, the specific heat capacity is approximately

The variation of temperature for the sample in our problem is

while the mass is m=150 g, so the amount of heat needed is
The formula for speed is s = d/t, where s is speed, d is distance, and t is time. The formula can be applied to all objects, including cars, to find their speed.
In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
Answer:
The statement is true.
Both gravity and centrifugal force act on the Moon which causes it get pulled towards Earth (gravity) and get "flung away" so it doesn't hit us (centrifugal force).
The definition for the prime meridian is: The prime meridian with 0 degrees longitude runs through Greenwich. Polaris is the north star <span>at 50 degrees above the horizon, which means 50 degrees latitude.
</span>If you observe Polaris at 50 degrees of altitude, you are at latitude 50 North. You that's why you know that your boat's location is <span>50º north latitude and 0º longitude.</span>