Answer:
Stainless steel
Explanation:
I will try to order the solutions from the least correct to the most correct.
Since a temperature greater than 200 ° F is required, that is to say approximately 93 ° c, <em>Polycaprolactone</em> is the least indicated. Its melting point is approximately 60 ° C, so it would not serve the required application.
On the other hand we have<em> Untreated aluminum</em>, which although it has a melting point higher than the required one, without a zinc and magnesium treatment it will easily oxidize in a salty environment, so it cannot be used in this choice either.
We have to compare the two steels.
The<em> Mild Steel </em>has a better corrosion resistance than the previous ones, but in a long-term cycle it will end up full of corrosion and therefore its properties will be highly affected.
Finally, we have <em>stainless steel</em>, which, as the name implies, contains in some of its variations chromium, zinc or magnesium in its alloys, which makes it highly resistant to corrosion.
In addition its melting point is above 1500 ° c.
The best choice is stainless steel.
as it is given that


now we will have

now the magnitude of this vector is given as


now to find the direction we can use




Answer:
Mg and HCl
Explanation:
Here, we want to get the combination that could be used in the production of the needed hydrogen
An important chemical property of inorganic acids is that when they react with metals, they give off hydrogen gas in conjunction with the formation of a salt
HCl is a mineral acid while Mg is a metallic substance
So the reaction between this metal and the mineral acids will give the needed hydrogen gas to be produced
Answer:
The initial velocity of the snowball was 22.21 m/s
Explanation:
Since the collision is inelastic, only momentum is conserved. And since the snowball and the box move together after the collision, they have the same final velocity.
Let
be the mass of the ball, and
be its initial velocity; let
be the mass of the box, and
be its velocity; let
be the final velocity after the collision, then according to the law of conservation of momentum:
.
From this we solve for
, the initial velocity of the snowball:

now we plug in the numerical values
,
,
, and
to get:


The initial velocity of the snowball is 22.21 m/s.
<em>P.S: we did not take vectors into account because everything is moving in one direction—towards the west.</em>
Answer:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
Explanation:
The graph shown in the figure is a velocity-time graph, which means that:
- On the x-axis, the time is plotted
- On the y-axis, the velocity is plotted
Therefore, this means that the object is not moving when the line is horizontal (because at that moment, the velocity is constant, so the object is not moving). This occurs in the following intervals:
Between 2.0 s and 4.0 s (B and C)
Between 5.0 s and 8.0 s (D and E)
Between 10.0 s and 11.0 s (F and G)
From the graph, it would be possible to infer additional information. In particular:
- The area under the graph represents the total distance covered by the object
- The slope of the graph represents the acceleration of the object