Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest
Answer:
An atom is a particle of matter that uniquely defines achemical element. An atom consists of a central nucleus that is usually surrounded by one or more electrons. Each electron is negatively charged. The nucleus is positively charged, and contains one or more relatively heavy particles known as protons and neutrons.
Answer;
(3) Substance A is an element and substance Z is a compound.
Explanation;
-A compound is a substance formed when two or more chemical elements are chemically bonded together, such as water, carbon dioxide, methane, etc while an element is a pure chemical substance made of same type of atoms, such includes, oxygen, potassium, hydrogen, carbon, etc.
- Compounds can be broken
down or decomposed into simpler substances: elements cannot be broken down chemically into simpler substances .