The answer is 60.3% magnesium, 39.7% oxygen.
Solution:
The chemical equation for the reaction is 2 Mg + O2 → 2 MgO.
Since magnesium reacts completely with oxygen, it is the limiting reactant in the reaction. Hence, we can use the number of moles of magnesium to get the mass of MgO produced:
moles of magnesium = 14.7g / 24.305g mol-1
= 0.6048 mol
mass of MgO = 0.6048mol Mg(2 mol MgO/2mol Mg)(40.3044g MgO/1 mol MgO)
= 24.376g MgO
We can now solve for the percentage of magnesium:
% Mg = (14.7g Mg / 24.376g MgO)*100% = 60.3%
We also use the number of moles of magnesium to get the mass of oxygen consumed in the reaction:
mass of O2 = 0.6048 mol Mg (1mol O2 / 2mol Mg) (31.998g / 1mol O2)
= 9.676g
The percentage of oxygen is therefore
% O2 = (9.676g O2 / 24.376g MgO)*100%
= 39.7%
Notice that we can just subtract the magnesium's percentage from 100% to get
% O2 = 100% - 60.3% = 39.7%
There are no options so I'll just give my answer. Intermolecular hydrogen bonding is responsible for the high boiling point of water. The presence of hydrogen bonds can cause an anomaly in the normal succession of states of matter for certain mixtures of chemical compounds as temperature increases or decreases.
76.88 I think im sorry if wrong
A.helium<span>Hydrogen is the most abundant element in the Universe; helium is second. However, after this, the rank of abundance does not continue to correspond to the atomic number; oxygen has abundance rank 3, but atomic number 8.</span>
Answer:
option A = S(s) + O₂(g) → SO₂ (s)
Explanation:
Chemical equation:
S(s) + O₂(g) → SO₂ (s)
when sulfur burned in the presence of oxygen it produce sulfur dioxide. The sulfur dioxide can further react with oxygen to produce sulfur trioxide and then react with water to form sulfuric acid.
Uses of sulfur dioxde:
It is used as a solvent and reagent in laboratory.
Sulfur dioxide is used to produce sulfuric acid.
It is used as a disinfectant
It is also used as a reducing agent.
It is used to preserve the dry food.