When we first dig into soil, it's nice and soft.( Depending on what soil it is; usually topsoil)
But when we go deeper into it, there are rocks and the soil is harder. There is bedrock at the bottom, subsoil in the middle, and topsoil at the top, which is where we walk.
Answer:
Case A
Explanation:
given,
size of bacteria = 1 mm x 1 mm
velocity = 20 mm/s
size of the swimmer = 1.5 m x 1.5 m
velocity of swimmer = 3 m/s
Viscous force

for the bacteria


for the swimmer


from the above force calculation
In case B inertial force that represent mass is more than the inertial force in case of bacteria.
Viscous force is dominant in case of bacteria.
So, In Case A viscous force will be dominant.
B. The voltage is the same across all resistors in the circuit.
hi brainly user! ૮₍ ˃ ⤙ ˂ ₎ა
⊱┈────────────────────────┈⊰

Considering that the pulley is fixed, the force applied should be equal to the weight of the object - of 400N.

Pulleys or pulleys are mechanical tools used to assist in the movement of objects and bodies. There are two types of pulleys: fixed and movable. While the fixed pulley changes the direction of force, the moving pulley helps to decrease the force needed to move the object or body in question.
As the statement only tells us a pulley, we must consider that it is fixed, <u>because generally when it is mobile, this information is highlighted in the question</u>.
In this way, a fixed pulley only changes the direction of the applied force. Thus, the force must have the same magnitude as the weight of the object to be moved. If the bucket weighs 400N, the force applied to the pulley must be 400N.
<u>Therefore, having a fixed pulley, the force applied must be equal to the weight of the object, and will be 400N.</u>