Answer: 1026s, 17.1m
Explanation:
Given
COP of heat pump = 3.15
Mass of air, m = 1500kg
Initial temperature, T1 = 7°C
Final temperature, T2 = 22°C
Power of the heat pump, W = 5kW
The amount of heat needed to increase temperature in the house,
Q = mcΔT
Q = 1500 * 0.718 * (22 - 7)
Q = 1077 * 15
Q = 16155
Rate at which heat is supplied to the house is
Q' = COP * W
Q' = 3.15 * 5
Q' = 15.75
Time required to raise the temperature is
Δt = Q/Q'
Δt = 16155 / 15.75
Δt = 1025.7 s
Δt ~ 1026 s
Δt ~ 17.1 min
Below are the choices that can be found elsewhere:
a. 268 kJ
<span>b. 271 kJ </span>
<span>c. 9 kJ </span>
<span>d. 6 kJ
</span>
So the key thing to realize here is what the information given to you actually means. Sublimation is going from a sold to a gas. Vaporization is going from a liquid to a gas. Hence you can create two equations from the information that you have:
<span>Ga (s) --> Ga (g) delta H = 277 kJ/mol </span>
<span>Ga (l) --> Ga (g) delta H = 271 kJ/mol </span>
<span>From these two equations, you can then infer how to get the melting equation be simply finding the difference between the sublimation (two steps) and vaporization (one step). </span>
<span>Ga (s) --> Ga (l) delta H = 6 kJ/mol </span>
<span>At this point, all you need to do is a bit of stoichiometry. You start with 1.50 mol and multiply by the amount of energy per mole (6 kJ/mol). </span>
<span>*ANSWER* </span>
<span>9 kJ/mol (C)</span>
Answer:At the top of the page is a transvers wave
C= crest
B= wavelingth
D= trough
A= amplatud
The next wave is a longitudinal wave