Information that is given:
a = -5.4m/s^2
v0 = 25 m/s
---------------------
S = ?
Calculate the S(distance car traveled) with the formula for velocity of decelerated motion:
v^2 = v0^2 - 2aS
The velocity at the end of the motion equals zero (0) because the car stops, so v=0.
0 = v0^2 - 2aS
v0^2 = 2aS
S = v0^2/2a
S = (25 m/s)^2/(2×5.4 m/s^2)
S = (25 m/s)^2/(10.8 m/s^2)
S = (625 m^2/s^2)/(10.8 m/s^2)
S = 57.87 m
A persons or animals nature, especially as it permanently affects their behavior
The rock cycle is a basic concept in geology that describes the time-consuming transitions through geologic time among the three main rock types: sedimentary, metamorphic, and igneous. As the adjacent diagram illustrates, each of the types of rocks is altered or destroyed when it is forced out of its equilibrium conditions. An igneous rock such as basalt may break down and dissolve when exposed to the atmosphere, or melt as it is subducted under a continent. Due to the driving forces of the rock cycle, plate tectonics and the water cycle, rocks do not remain in equilibrium and are forced to change as they encounter new environments. The rock cycle is an illustration that explains how the three rock types are related to each other, and how processes change from one type to another over time. This cyclical aspect makes rock change a geologic cycle and, on planets containing life, a biogeochemical cycle.
Plate movements drive the rock cycle by pushing rocks back into the mantle, where they melt and become magna again. Plate movements also cause the folding, faulting and uplift of the crust that move rocks through the rock cycle.
sources: wikapedia, Harmonybaddie on brainly
Answer:
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Explanation:
As we know that the relation between electric field and electric potential is given as

here if we say that potential is constant because electric field sensor is moving along equi-potential line.
Then we will say
V = constant
so we have

so electric field will remain constant always in magnitude and always remains perpendicular to the surface
so we have
b. Constant magnitude, but varying direction, perpendicular to the equipotential.
Answer: 
Explanation:
Given
Length of beam 
mass of beam 
Two forces of equal intensity acted in the opposite direction, therefore, they create a torque of magnitude

Also, the beam starts rotating about its center
So, the moment of inertia of the beam is

Torque is the product of moment of inertia and angular acceleration
