Answer:
46.3g H2O
Explanation:
start by balancing it: CaC2(s) + 2H2O(g) -> Ca(OH)2(s) + C2H2(g)
then use factor label method to solve
82.4g CaC2 x (1 mol CaC2/64.10g CaC2) x (2 mol H2O/1 mol CaC2) x (18.016g H2O/1 mol H20) = 46.3g H2O
The unit of mass is 'Kilogram' which is written as 'kg' and volume, v = 10 L.
<h3>Equation :</h3>
To calculate the volume
Use formula,
density = mass / volume
density = 100 kg/L
mass = 1000 kg
volume = mass / density
v = 1000/100
v = 10 L
<h3>What is density mass?</h3>
A substance, material, or object's mass density is a measure of how much mass (or how many particles) it has in relation to the volume it occupies.
To know more about volume :
brainly.com/question/1578538
#SPJ9
I understand the question you are looking for :
If you have a density of 100 kg/L, and a mass of 1000 units, tell me the following: First what are the mass units? Secondly, what is the volume?
Answer:
stay the same.
Explanation: Period 3 consists of the full 1s, 2s, and 2p electron orbitals, plus the 3s and 3p valence orbitals, which are filled with a total of 8 more electrons as we move from left (Na) to the far right (Ar):
Na: 1s2 2s2 2p6 3s1
Ar: s2 2s2 2p6 3s2 3p6
As we move from left to right, and ignoring the already-filled 1s, 2s, and 2p orbitals, the period three starting and ending elements have the following:
Na: 3s1
Ar: 3s2, 3p6
All the new electrons electrons filled the third energy level (3s and 3p). So the energy level does not change, just the orbitals.
Ice caps so it would be D
Hope it helps :-)