1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nezavi [6.7K]
3 years ago
8

The solid aluminum shaft has a diameter of 50 mm. Determine the absolute maximum shear stress in the shaft and sketch the shear-

stress distribution along a radial line of the shaft where the shear stress is maximum. Set T1
Engineering
1 answer:
jarptica [38.1K]3 years ago
5 0

Answer:

Max shear = 8.15 x 10^7 N/m2

Explanation:

In order to find the maximum stress for a solid shaft having radius r, we will be applying the Torsion formula which can be written as;

Allowable Shear Stress = Torque x Radius / pi/2 x radius^4

Putting the values we have;

T = 2000 N/m

Radius = Diameter/2 = 0.05 / 2 = 0.025 m

Putting values in formula;

Max shear = 2000 x 0.025 / 3.14/2 x (0.025)^4

Max shear = 8.15 x 10^7 N/m2

You might be interested in
4. In the Hyatt Regency walkway case study, it is reported that Jack Gillum stamps the 42 shop drawings, including the revised S
mario62 [17]

Answer:

Responsibility

Explanation:

By stamping the drawings that he was looking over, Jack Gillum conveys the fact that he is accepting responsibility for this work. The purpose of Gillum's stamp is to explain that such work has been under engineering review, and that it has fulfilled all the requirements that he watches our for. By putting his stamp in this work, Gillum accepts responsibility in case an error or a discrepancy is found in the drawings.

3 0
3 years ago
In an apartment the interior air temperature is 20°C and exterior air temperatures is 5°C. The wall has inner and outer surface
ELEN [110]

Answer:

20 W/m², 20 W/m², -20 W/m²

Yes, the wall is under steady-state conditions.

Explanation:

Air temperature in room = 20°C

Air temperature outside = 5°C

Wall inner temperature = 16°C

Wall outer temperature = 6°C

Inner heat transfer coefficient = 5 W/m²K

Outer heat transfer coefficient = 20 W/m²K

Heat flux = Concerned heat transfer coefficient × (Difference of the temperatures of the concerned bodies)

q = hΔT

Heat flux from the interior air to the wall = heat transfer coefficient of interior air × (Temperature difference between interior air and exterior wall)

⇒ Heat flux from the interior air to the wall = 5 (20-6) = 20 W/m²

Heat flux from the wall to the exterior air = heat transfer coefficient of exterior air × (Temperature difference between wall and exterior air)

⇒Heat flux from the wall to the exterior air = 20 (6-5) = 20 W/m²

Heat flux from the wall to the interior air = heat transfer coefficient of interior air × (Temperature difference between wall and interior air)

⇒Heat flux from the wall and interior air = 5 (16-20) = -20 W/m²

Here the magnitude of the heat flux are same so the wall is under steady-state conditions.

7 0
3 years ago
The driving force for fluid flow is the pressure difference, and a pump operates by raising the pressure of a fluid (by converti
Lady_Fox [76]

Answer:

The maximum possible volume flow of gasoline is 0.543 m^3/s

Explanation:

Power = pressure differential × volume flow rate

Power = 3.8 kW

Pressure differential = 7 kPa

Volume flow rate = power ÷ pressure differential = 3.8 ÷ 7 = 0.543 m^3/s

3 0
4 years ago
The first assembled product used for testing and validating the product concept is called a prototype. True or false
harina [27]

Answer:

True

Explanation:

a prototype is first produced to test for defects

7 0
3 years ago
Air at 1600 K, 30 bar enters a turbine operating at steady state and expands adiabatically to the exit, where the pressure is 2.
djyliett [7]

Solution :

The isentropic efficiency of the turbine is given as :

$\eta = \frac{\text{actual work done}}{\text{isentropic work done}}$

  $=\frac{m(h_1-h_2)}{m(h_1-h_{2s})}$

  $=\frac{h_1-h_2}{h_1-h_{2s}}$

The entropy relation for the isentropic process is given by :

$0=s^\circ_2-s^\circ_1-R \ln \left(\frac{P_2}{P_1}\right)$

$\ln \left(\frac{P_2}{P_1}\right)=\frac{s^\circ_2-s^\circ_1}{R}$

$ \frac{P_2}{P_1}=exp\left(\frac{s^\circ_2-s^\circ_1}{R}\right)$

$\left(\frac{P_2}{P_1}\right)_{s=constant}=\frac{P_{r2}}{P_{r1}}$

Now obtaining the properties from the ideal gas properties of air table :

At $T_1 = 1600 \  K,$

$P_{r1}=791.2$

$h_1=1757.57 \ kJ/kg$

Calculating the relative pressure at state 2s :

$\frac{P_{r2}}{P_{r1}}=\frac{P_2}{P_1}$

$\frac{P_{r2}}{791.2}=\frac{2.4}{30}$

$P_{r2}=63.296$

Obtaining the properties from Ideal gas properties of air table :

At $P_{r2}=63.296$,  $T_{2s}\approx 860 \ K$

Considering the isentropic relation to calculate the actual temperature at the turbine exit, we get:

  $\eta=\frac{h_1-h_2}{h_1-h_{2s}}$

$\eta=\frac{c_p(T_1-T_2)}{c_p(T_1-T_{2s})}$

$\eta=\frac{T_1-T_2}{T_1-T_{2s}}$

$0.9=\frac{1600-T_2}{1600-860}$

$T_2= 938 \ K$

So, at $T_2= 938 \ K$, $h_2=975.66 \ kJ/kg$

Now calculating the work developed per kg of air is :

$w=h_1-h_2$

  = 1757.57 - 975.66

  = 781 kJ/kg

Therefore, the temperature at the exit is 938 K and work developed is 781 kJ/kg.

4 0
3 years ago
Other questions:
  • technician A says that in any circuit, electrical current takes the path of least resistance. technician B says that while this
    13·1 answer
  • What are the five basic elements of a system?
    15·2 answers
  • An insulated rigid tank is divided into two compartments of different volumes. Initially, each compartment contains the same ide
    11·1 answer
  • Question 7 options: A steel tape that has a length of 100.00 at 68 degrees F is to be used to lay off a building with the dimens
    6·1 answer
  • A pictoral logo is a ________________ and it's identifying the ___________ of the company.
    5·1 answer
  • ASAP PLEASEEEE HELP : Eccentricity, Inclination, True anomaly, Argument of perigee, Right ascension or the ascending node, Semi-
    11·1 answer
  • a) Complete the following methods description using the correct tense for the verb in brackets. (This student is using passive v
    14·1 answer
  • A questiom for the big carb himself no cap
    7·1 answer
  • An exit sign must be:Colored in a way that doesn’t attract attentionIlluminated by a reliable light sourceAt least 3 inches tall
    14·1 answer
  • Which of the following is a true when describing an air ratchet?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!