Answer:
#_photons = 30 photons / s
Explanation:
Let's start by finding the energy of a photon of light, let's use the Planck relation
E = h f
the speed of light is related to wavelength and frequency
c = λ f
we substitute
E = h c /λ
E₀ = 6.63 10⁻³⁴ 3 10⁸/500 10⁻⁹
E₀ = 3.978 10⁻¹⁹ J
now let's use a direct proportion rule. If the energy of a photon is Eo, how many fornes has an energy E = 1.2 10⁻¹⁷ J in a second
#_photons = 1 photon (E / Eo)
#_photons = 1 1.2 10⁻¹⁷ /3.978 10⁻¹⁹
#_photons = 3.0 10¹
#_photons = 30 photons / s
I think, I do think.. that it is D.
Wouldn't it be simple to divide 5 from 20, that would equal 4.
4 earthworms per square meter.
Answer:
Subtract the kinetic energy at the bottom from the potential energy loss. The remainder becomes frictional heat.
Potential energy loss:
M g H = 21.7*9.81*3.5 = 745.1 J
Kinetic energy at bottom of slide:
= (1/2) M v^2 = 52.5 J
Answer:
Radioactive decay is the spontaneous breakdown of an atomic nucleus resulting in the release of energy and matter from the nucleus. Remember that a radioisotope has unstable nuclei that does not have enough binding energy to hold the nucleus together.
Explanation:
Answer: Wavelength is related to light and also related to energy. The shorter the wavelengths and the higher the frequency corresponds with greater energy. So the longer the wavelengths and lower the frequency results in lower energy. The energy equation is E = hν.