The amount of force required to stretch or compress the spring is known as the spring force. Its unit is Newton(N). Force is needed to stretch spring is 10.2 N.
<h3>What is spring force?</h3>
The force required to extend or compress a spring by some distance scales linearly with respect to that distance is known as the spring force. Its formula is
F = kx
The given data in the problem is;
F is the spring force =?
K is the spring constant= 8.5 N/m
x is the length by which spring got stretched = 1.2m

Hence the force is needed to stretch the spring is 10.2 N.
To learn more about the spring force refer to the link;
brainly.com/question/4291098
Air expands as it warms. Therefore warm air is less dense than cool air. The warm air from the first floor apartments rises to the second floor. People on the second floor require less heating to keep their <span>apartments comfortable.
-Hope this helps </span>
The maximum value of θ of such the ropes (with a maximum tension of 5,479 N) will be able to support the beam without snapping is:

We can apply the first Newton's law in x and y-direction.
If we do a free body diagram of the system we will have:
x-direction
All the forces acting in this direction are:
(1)
Where:
- T(1) is the tension due to the rope 1
- T(2) is the tension due to the rope 2
Here we just conclude that T(1) = T(2)
y-direction
The forces in this direction are:
(2)
Here W is the weight of the steel beam.
We equal it to zero because we need to find the maximum angle at which the ropes will be able to support the beam without snapping.
Knowing that T(1) = T(2) and W = mg, we have:



T(1) must be equal to 5479 N, so we have:


Therefore, the maximum angle allowed is θ = 37.01°.
You can learn more about tension here:
brainly.com/question/12797227
I hope it helps you!
Neurogenesis does not occur everywhere in the brain but is evident in the hippocampus and olfactory bulb and perhaps in the cerebral cortex. New neurons are born not from mature nerve cells but rather develop from neural stem cells that remain in our brains throughout life.